Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 130-139.doi: 10.16088/j.issn.1001-6600.2020100601

Previous Articles     Next Articles

First Principles Calculations of Electronic Structure and Optical Properties of Li-Doped Janus MoSSe Monolayer

SUN Zhiyuan1, TANG Mei1, ZHANG Xinxin1, WANG Jianrong1, Nsajigwa Mwankemwa1, XIAO Yi2, ZHANG Weibin1*   

  1. 1. School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou Hubei 434023, China;
    2. Institute of Materials Science, Darmstadt University of Technology, Darmstadt 64287, Germany
  • Received:2020-10-06 Revised:2020-11-02 Online:2021-11-25 Published:2021-12-08

Abstract: The electronic and optical properties of Li-doped Janus MoSSe monolayer were investigated based on first-principles calculations. The calculations showed that the binding energy values after Li doped were all negative values, indicating that energy is released during the doping process, and the Li-doped Janus MoSSe system was stable. The electronic structure analysis showed that there were impurity levels introduced into the forbidden band gap of Janus MoSSe. Therefore, the material changed from a direct band gap semiconductor to an indirect band gap semiconductor, and the band gap decreased accordingly. When the doping concentration reached 6.25%, the band gap reduced more, showing a better modulation effect for the electronic structure. The study of optical properties showed that the doping of Li can change the absorption coefficient and static dielectric constant ε(0) of the material. Li substitution doping increased the light absorption intensity, and enhanced its visible light absorption intensity. The results indicated that the Li doped Janus MoSSe has potential applications in solar energy harvesting or photocatalysis.

Key words: Li doped, electronic structure, absorption coefficient, dielectric function, Janus MoSSe monolayer

CLC Number: 

  • O488
[1] ANTONOVA I V. Vertical heterostructures based on graphene and other 2D materials[J]. Semiconductors, 2016, 50(1): 66-82. DOI:10.1134/S106378261601005X.
[2] 吴娟, 朱宏阳, 梅平, 等. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120-131. DOI:10.16088/j.issn.1001-6600.2019.03.014.
[3] 陈钱, 匡勤, 谢兆雄. 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021, 79(1): 10-22. DOI:10.6023/A20080384.
[4] 郭润江, 孙衍乐, 单默昆, 等. 热处理工艺对镍基纳米晶合金材料组织结构的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 95-101. DOI:10.16088/j.issn.1001-6600.2016.03.013.
[5] 张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 72(3): 367-377. DOI:10.6023/A14020093.
[6] 毛芳芳, 庞锦英, 李建鸣, 等. Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 112-120. DOI:10.16088/j.issn.1001-6600.2018.01.016.
[7] 李先先, 阮贵华, 张文娟, 等. 氧化石墨烯掺杂高内相乳液多孔复合材料的制备及其应用[J]. 桂林理工大学学报, 2019, 39(2): 453-459.
[8] 胡勇, 谢观水, 张哲泠, 等. 石墨烯量子点与有机太阳能电池[J]. 桂林电子科技大学学报, 2019, 39(4): 351-336.
[9] 曹娟, 崔磊, 潘靖. V, Cr, Mn掺杂MoS2磁性的第一性原理研究[J]. 物理学报, 2013, 62(18): 404-410. DOI:10.7498/aps.62.187102.
[10] 刘俊, 梁培, 舒海波, 等. 单层MoS2分子掺杂的第一性原理研究[J]. 物理学报, 2014, 63(11): 251-257. DOI:10.7498/aps.63.117101.
[11] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749. DOI:10.1038/nnano.2017.100.
[12] DIN H U, IDREES M, ALBAR A, et al.Rashba spin splitting and photocatalytic properties of GeC-MSSe(M=Mo, W) van der Waals heterostructures[J]. Physical Review B, 2019, 100 (16): 165425. DOI:10.1103/PhysRevB.100.165425.
[13] 张宗伟, 李酽, 初飞雪. 稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 117-121. DOI:10.16088/j.issn.1001-6600.2014.02.049.
[14] 李重宁,汤雪萍,邓雯靓,等.钼催化-共振瑞利散射光谱法测定痕量溴酸根[J].广西师范大学学报(自然科学版), 2015, 33(3):111-116. DOI:10.16088/j.issn.1001-6600.2015.03.017.
[15] MA X C, YONG X, JIAN C C, et al. Transition metal-functionalized Janus MoSSe monolayer: a magnetic and efficient single-atom photocatalyst for water-splitting applications[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18347-18354. DOI:10.1021/acs.jpcc.9b03003.
[16] RIIS-JENSEN A C, DEILMANN T, OLSEN T, et al. Classifying the electronic and optical properties of Janus monolayer[J]. ACS Nano, 2019, 13(11): 13354-13364. DOI:10.1021/acsnano.9b06698.
[17] 胡锡亨, 张伟斌, 吴青峰, 等. RbCaCl3晶体的弹性及热力学性质研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 173-180. DOI:10.16088/j.issn.1001-6600.2019.01.020.
[18] YIN W J, WEN B, GE Q X, et al. Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: a first-principles study[J]. Progress in Natural Science: Materials International, 2019, 29(3): 335-340. DOI:10.1016/j.pnsc.2019.05.003.
[19] TANG X, WEI Z X, LIU Q H, et al. Strain engineering the D-band center for Janus MoSSe edge: nitrogen fixation[J]. Journal of Energy Chemistry, 2019, 33(6): 155-159. DOI:10.1016/j.jechem.2018.09.008.
[20] 张伟斌, 汪建容, 肖祎, 等. 氢/氟化Janus MoSSe的电子结构和光学性质对比研究[J]. 长江大学学报(自然科学版), 2020, 17(5): 97-102. DOI:10.16772/j.cnki.1673-1409.2020.05.016.
[21] TAO S D, XU B, SHI J, et al. Tunable dipole moment in Janus single-layer MoSSe via transition-metal atom adsorption [J].The Journal of Physical Chemistry C, 2019, 123(14): 9059-9065. DOI:10.1021/acs.jpcc.9b00421.
[22] TANG M, ZHANG F C, CHEN S J, et al. First-principles investigations of the stability and electronic properties of fluorinated Janus MoSSe monolayer[J]. Journal of Theoretical and Computational Chemistry, 2019, 18(5): 1950024. DOI:10.1142/S021963361950024X.
[23] JIN C, TANG X, TAN X, et al. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material[J]. Journal of Materials Chemistry A, 2019, 7(3): 1099-1106. DOI:10.1039/c8ta08407f.
[24] YIN W J, WEN B, WEI X L, et al. The tunable dipole and carrier mobility for few layer Janus MoSSe structure[J]. Journal of Materials Chemistry C, 2018, 6(7): 1693-1700. DOI:10.1039/C7TC05225A.
[25] 张成刚, 方志刚, 赵振宁, 等. 团簇CoFe2B2稳定性的密度泛涵理论研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 86-94. DOI:10.16088/j.issn.1001-6600.2016.03.012.
[26] 李雯博, 方志刚, 赵振宁, 等. 团簇Co5B2反应活性的DFT研究[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 76-83. DOI:10.16088/j.issn.1001-6600.2017.04.011.
[27] ZHANG W B, CHO H Y, ZHANG Z J, et al. First-principles calculation the electronic structure and the optical properties of Mn-decorated g-C3N4 for photocatalytic applications[J]. Journal of the Korean Physical Society, 2016, 69(9): 1445-1449. DOI:10.3938/jkps.69.1445.
[28] LI L Y, WANG W H, LIU H, et al. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8460-8464. DOI:10.1021/jp811507r.
[29] ZHAO Z Y, LI Z S, ZOU Z G. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4[J]. Physical Chemistry Chemical Physics, 2011, 13(10): 4746-4753. DOI:10.1039/c0cp01871f.
[30] 黄学仁, 赵志愿, 蒋毅民. 4′-(4-苯甲酸)-2,2′:6′,2″-三联吡啶锌配位聚合物的合成、晶体结构及荧光性质研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 98-104. DOI:10.16088/j.issn.1001-6600.2016.02.014.
[31] 栾清, 杨传路, 王美山, 等. C掺杂单层MoS2光学特性的第一性原理研究[J].鲁东大学学报(自然科学版), 2017, 33(2): 133-138,192. DOI:10.3969/j.issn.1673-8020.2017.02.007.
[32] 兰宇卫, 易其磊, 黄艳桃, 等. 微波辅助合成CdTe量子点及在太阳能电池中的应用[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 104-110. DOI:10.16088/j.issn.1001-6600.2017.03.013.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .