Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 140-146.doi: 10.16088/j.issn.1001-6600.2020112801

Previous Articles     Next Articles

Study on the Polarization of Fe4P Clusters

HOU Qianqian, FANG Zhigang*, QIN Yu, ZHU Yiwen   

  1. School of Chemical Engineering, University of Science and Technology, Anshan Liaoning 114501,China
  • Received:2020-11-28 Revised:2021-01-01 Online:2021-11-25 Published:2021-12-08

Abstract: In order to find out the influence of the hybridization of Fe and P atoms on the stability of Fe4P clusters and the relationship between the polarizability and the stability of the optimized configurations, according to the density functional theory and the principle of topology, a total of 16 initial configurations of Fe4P in binary and quadruple states are designed under B3LYP/lanl2dz high quantum chemistry level chemical configuration. The polarizability and density of states of eight configurations are studied, and the following conclusions are drawn: configuration 5(4) has the largest anisotropy invariant, which has the strongest response to the external field and is easily affected by the external field; configuration 2(2) has the largest polarizability and the largest degree of deformation; configuration 2(4) has the smallest value of polarizability, which is the least prone to deformation, and it also shows that the multiplicity will affect the polarizability of the response configuration to a certain extent. There are five main hybridization modes of Fe—P bond, which are p-p, p-d, p-p-d, p-d-d and s-s-p-p, and the p-d and p-p-d hybridizations play an important role in promoting the stability of Fe—P bond in cluster Fe4P.

Key words: cluster Fe4P, density functional theory, polarizability, density of states, hybridization

CLC Number: 

  • O641.12
[1] SON C Y, KWAK I H, LIM Y R, et al. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction[J].Chemical Communications, 2016, 52(13): 2819-2822. DOI:10.1039/c5cc09832g.
[2] LIU M J, YANG L M, LIU T, et al. Fe2P/reduced graphene oxide/Fe2P sandwich-structured nanowall arrays:a high-performance non-noble-metal electrocatalyst for hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5(18): 8608-8615. DOI:10.1039/c7ta01791j.
[3] LIN C, GAO Z F, YANG J H, et al. Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(15): 6387-6392. DOI:10.1039/c8ta00260f.
[4] HE F, LI K, XIE G Y, et al. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene[J]. Physical Chemistry Chemical Physics, 2016, 18(18): 12675-12681.DOI:10.1039/c6cp01570k.
[5] LI G L, YUAN L F, CHEN W W, et al. Efficient hierarchically synthesized Fe2P nanoparticles embedded in an N,P-doped mesoporous carbon catalyst for the oxygen reduction reaction[J]. New Journal of Chemistry, 2018, 42(12): 9488-9495. DOI:10.1039/c8nj00380g.
[6] SINGH K P, BAE E J, YU J S. Fe-P: A new class of electroactive catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137(9):3165-3168. DOI:10.1039/c6cp01570k.
[7] WANG X L, LIAO X P, ZHANG W H, et al. Bio-inspired fabrication of hierarchical Ni-Fe-P coated skin collagen fibers for high-performance microwave absorption[J]. Physical Chemistry Chemical Physics, 2015, 17(3): 2113-2120.DOI:10.1039/c4cp03909b.
[8] CHAURASIA S K, PRAKASH U, MISRA P S, et al. Fe-P soft magnetic properties of Iron for A.C. applications[J]. Advanced Materials Research, 2012, 585:289-293. DOI:10.4028/www.scientific.net/AMR.585.289.
[9] ZHENG G P, LU X, HAN Z. Synthesis and electro-magneto-mechanical properties of graphene aerogels functionalized with Co-Fe-P amorphous alloys[J]. Micromachines, 2016, 7(7):117.DOI:10.3390/mi7070117.
[10] TANG F M, SU H, ZHAO X, et al. Potential-driven surface active structure rearrangement over FeP@NC towards efficient electrocatalytic hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2019, 21(15): 7918-7923.DOI:10.1039/C9CP00375d.
[11] GENG S J, WANG Q. Oxidation behavior of stainless steel with electroless Ni-Fe-P coatings[J]. Advanced Materials Research, 2010, 160/162:1276-1279. DOI:10.4028/www.scientific.net/AMR.160-162.1276.
[12] YANG Q R, LI W J, CHOU S L, et al. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery[J]. RSC Advances, 2015, 5(98): 80536-80541.DOI:10.1039/c5ra18314f.
[13] LI W J, CHOU S L, WANG J Z , et al. A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications, 2015, 51(17):3682-3685. DOI:10.1039/c4cc09604e.
[14] 李历红, 方志刚, 赵振宁, 等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版), 2019, 43(2): 160-166. DOI:10.16357/j.cnki.issn1000-5862.2019.02.08.
[15] 秦渝, 方志刚, 张伟, 等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版), 2020, 44(1): 56-62. DOI:10.16357/j.cnki.issn1000-5862.2020.01.10.
[16] ROMAN M, KLOKISHNER S. Electric field effects on magnetic and polarizability properties of clusters with two-electron transfer[J]. The Journal of Physical Chemistry A, 2018, 122(46): 9093-9099. DOI:10.1021/acs.jpca.8b09822.
[17] 王美玲, 方志刚, 秦渝, 等. 团簇NiMo3P极化率与催化性质的研究[J]. 北京化工大学学报(自然科学版), 2020, 47(5): 38-45. DOI:10.13543/j.bhxbzr.2020.05.005.
[18] 张陈俊. InC-n(n=1~10)团簇碎片能和极化率的密度泛函理论研究[J]. 西安航空学院学报, 2018, 36(3): 50-53,96. DOI:1008-9233(2018)03-0050-04.
[19] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. DOI:10.1063/1.448799.
[20] 李历红, 方志刚, 赵振宁, 等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1):165-172. DOI:10.16088/j.issn.1001-6600.2019.01.019.
[21] ZHAO Z Y, LIU L L, ZHANG S T, et al. Phase diagram, stability and electronic properties of an Fe-P system under high pressure: a first principles study[J]. RSC Advances, 2017, 7(26): 15986-15991. DOI:10.1039/c7ra01567d.
[22] 李雯博,方志刚,赵振宁,等.团簇Co5B2反应活性的DFT研究[J].广西师范大学学报(自然科学版),2017,35(4):76-83.DOI:10.16088/j.issn.1001-6600.2017.04.011.
[23] YU X G. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in Applied Clifford Algebras, 1999, 9(1): 109-118. DOI:10.1007/bf03041943.
[24] HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. Journal of Chemical Physics, 1977, 66(10): 4377-4384. DOI:10.1063/1.433731.
[25] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of Chemical Physics, 1985, 82(1): 270-283. DOI:10.1063/1.448799.
[1] LI Lihong, FANG Zhigang, ZHAO Zhenning, CHEN Lin, HAN Jianming, CUI Yuandong, MA Tianqi,JIANG Yuchen. Catalytic Properties of Cluster Ni3CoP in the Hydrogen Evolution Reaction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 165-172.
[2] LI Wenbo, FANG Zhigang, ZHAO Zhenning, CHEN Lin, XU Shihao,HAN Jianming, LIU Qi, CUI Yuandong. DFT Study on the Reactive Activity of Cluster Co5B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 76-83.
[3] XU Shihao,FANG Zhigang,HAN Jianming,ZHAO Zhenning,CHEN Lin,LIU Qi. Bonding and Magnetic Properties of Cluster V3B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 89-96.
[4] ZHANG Chenggang, FANG Zhigang, ZHAO Zhenning, WANG Maoxin,
LIU Jipeng, XU Shihao, HAN Jianming. The Density Functional Theory Study on Stability of Cluster CoFe2B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 86-94.
[5] JIANG Jiao-yun, FENG Long, QU Xian-cheng, TIAN Wen-fei. Clone and Expression of a Novel Sex-related Gene (F4) in Gonads During Sex Reversal in the Rice Field Eel (Monopterus albus) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .