Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 89-99.doi: 10.16088/j.issn.1001-6600.2020072503

Previous Articles     Next Articles

LS-FIR Filter Based on Least Square Method

WU Kangkang, ZHU Xufei, LU Ye*, ZHOU Peng, DONG Cui, DAI Qinxuan, ZHOU Runchang   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-07-25 Revised:2020-10-15 Online:2021-09-25 Published:2021-10-19

Abstract: LS-FIR filter based on least square method is proposed in this paper. According to the relationship between dispersion compensation filter and frequency domain function of the finite length unit impulse response, the linear equations are constructed. Because the number of independent equations is larger than unknowns in the linear equations, the equations have no solution. However, in the sense of minimum norm, a set of solutions is found to minimize the sum of squares estimated error modes. These are the least square solutions, which are used as the tap weight of the filter, and then the filter that needs to be designed is obtained. The simulation results of filter show that under different modulation formats (QPSK, 16QAM, 64QAM) and different signal-to-noise ratios (1~20), in the whole frequency band, when the number of taps is 315, the mean square error reaches 2.610 9×10-6; In the narrow band, when the number of taps is 197, the mean square error reaches 2.556 6×10-6; Compared with filters of FIR and Hm-FIR, the algorithm of LS-FIR has higher stability, better approximation effect, and better filtering effect.

Key words: LS-FIR filter, minimum norm, estimation error, least square solution, tap weight

CLC Number: 

  • TN713
[1] ZHENG L,NI M M,CAI L,et al. Performance analysis of group-synchronized DCF for dense IEEE 802.11 networks[J]. IEEE Transactions on Wireless Communications,2014,13(11):6180-6192. DOI:10.1109/TWC.2014.2337315.
[2] FEHENBERGER T,ALVARADO A,BAYVEL P, et al. On achievable rates for long-haul fiber-optic communications[J]. Optics Express,2015,23(7):9183-9191. DOI:10.1364/OE.23.009183.
[3] 张帆.高速光纤传输技术进展[J].光通信研究,2017(6):2-11,27.DOI:10.13756/j.gtxyj.2017.06.001.
[4] GOLDFARB G,LI G F. Chromatic dispersion compensation using digital IIR filtering with coherent detection[J]. IEEE Photonics Technology Letters,2007,19(13):969-971.DOI:10.1109/LPT.2007.898819.
[5] YU Y,YIN H W,HUANG Z P. Simulation study of DP-QPSK coherent detection transmission system based on optisystem[J]. Optics and Photonics Journal,2020,10(6):134-140.DOI:10.4236/opj.2020.106014.
[6] EL-NAHAL F I,ABUALOFF N M . Coherent optical communication systems based on orthogonal frequency division multiplexing[J]. Optoelectronics Letters, 2020, 16(4):303-305.DOI:10.1007/s11801-020-9166-2.
[7] XU T H,JACOBSEN G,POPOV S,et al. Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system[J]. Optics Communications,2010,283(6):963-967.DOI:10.1016/j.optcom.2009.11.011.
[8] EGHBALI A,JOHANSSON H, GUSTAFSSON O,et al. Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers[J]. Journal of Lightwave Technology,2014,32(8):1449-1456.DOI:10.1109/JLT.2014.2307916.
[9] 陈兰霞,王辉.基于LMS算法的可见光通信自适应均衡技术[J].光通信研究,2016(3):65-68.DOI:10.13756/j.gtxyj.2016.03.021.
[10] SLIM I,MEZGHANI A,BALTAR L G,et al. Delayed single-tap frequency-domain chromatic-dispersion compensation[J]. IEEE Photonics Technology Letters,2013, 25(2):167-170.DOI:10.1109/LPT.2012.2231064.
[11] OTUYA D O,KASAI K,YOSHIDA M,et al. A single-channel 1.92 T bit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization[J]. Optics Express,2013,21(19):22808-22816.DOI:10.1364/OE.21.022808.
[12] KUDO R,KOBAYASHI T,ISHIHARA K, et al. Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems[J]. Journal of Lightwave Technology,2009,27(16):3721-3728.DOI:10.1109/JLT.2009.2024091.
[13] PITTALÀ F,SLIM I, MEZGHANI A,et al. Training-aided frequency-domain channel estimation and equalization for single-carrier coherent optical transmission systems[J]. Journal of Lightwave Technology,2014,32(24):4849-4863.DOI:10.1109/JLT.2014.2358933.
[14] ZHU G J,RUAN X K,ZHOU Z L. Dispersion characteristics and compensation in the POLMUX coherent optical communication system[J]. Modern Physics Letters B,2017,31(19/20/21):1740054.DOI:10.1142/S0217984917400541.
[15] ZHANG N N,YI W, ZHENG Z B,et al. Joint equalization of linear impairments using two-stage cascade Kalman filter structure in coherent optical communication systems[J]. Optics Communications,2019,453:124398.DOI:10.1016/j.optcom.2019.124398.
[16] LAVERY D,MAHER R,MILLAR D S,et al. Digital coherent receivers for long-reach optical access networks[J]. Journal of Lightwave Technology,2013,31(4):609-620.DOI:10.1109/JLT.2012.2224847.
[17] SAVORY S J. Digital filters for coherent optical receivers[J]. Optics Express,2008,16(2):804-817.DOI:10.1364/OE.16.000804.
[18] LIU Y M,ZHANG Y H,PENG Y F,et al. Equalization of chromatic dispersion using wiener filter for coherent optical receivers[J]. IEEE Photonics Technology Letters,2016,28(10):1092-1095.DOI:10.1109/LPT.2016.2530980.
[19] 赵衍策. 高速相干光通信系统中色散均衡方法的研究 [D]. 长春:吉林大学,2018.
[20] 王红恩. 相干光通信系统中载波频偏和相位恢复算法研究 [D]. 北京:北京邮电大学,2019.
[21] CZEGLEDI C B,LIGA G,LAVERY D,et al. Digital backpropagation accounting for polarization-mode dispersion[J]. Optics Express,2017,25(3):1903-1915. DOI:10.1364/OE.25.001903.
[22] WANG X Z,CALABRO S,SPINNLER B. Advanced receiver design enables PDM-16QAM WDM transmission over 2660 km of SSMF with only EDFA [C] // ECOC 2016 - 42nd European Conference on Optical Communication. Piscataway, NJ:IEEE, 2016:1181-1183.
[23] TAYLOR M G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments[J]. IEEE Photonics Technology Letters,2004,16(2):674-676. DOI:10.1109/LPT.2003.823106.
[24] KIKUCHI K. Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology, 2016, 34(1):157-179. DOI:10.1109/JLT.2015.2463719.
[25] 张先才,邓见光,安妮,等.一种基于高等代数的线性最小二乘问题的解法[J].东莞理工学院学报,2020,27(5):1-7. DOI:10.16002/j.cnki.10090312.2020.05.001.
[26] 林宏,周传璘,赵娜,等. 仿真分析相干光通信中的数字信号处理算法[J].现代电子技术,2019,42(19):54-58. DOI:10.16652/j.issn.1004-373x.2019.19.013.
[27] LAVERY D,IVES D,LIGA G,et al. The benefit of split nonlinearity compensation for single channel optical fiber communications[J]. IEEE Photonics Technology Letters,2016,28(17):1803-1806. DOI:10.1109/LPT.2016.2572359.
[28] SEMRAU D,LAVERY D,GALDINO L,et al. The impact of transceiver noise on digital nonlinearity compensation[J]. Journal of Lightwave Technology,2018,36(3):695-702. DOI:10.1109/JLT.2017.2777452.
[29] 黄峻堃,张少武,万冲. 非线性色散对高斯脉冲传输的影响[J].量子电子学报,2018,35(5):603-607.
[30] CARTLEDGE J C,GUIOMAR F P,KSCHISCHANG F R,et al. Digital signal processing for fiber nonlinearities[J]. Optics Express,2017,25(3):1916-1936. DOI:10.1364/OE.25.001916.
[31] 祝贵君. 高速光通信中的电域色散补偿算法研究 [D]. 温州:温州大学,2018.
[32] 王晓乐.通信工程中光纤技术的设计应用和发展趋势[J].通信电源技术,2018,35(2):186-187. DOI:10.19399/j.cnki.tpt.2018.02.082.
[33] 史继荣,刘琳. 2.5 Gbit/s相干光通信系统的研究[J]. 上海电气技术,2019,12(3):14-16.
[34] 曹文华. 准线性光纤传输系统中几种色散补偿方案的性能比较[J].光学学报,2018,38(4):0406002.
[35] RIBEIRO V B,OLIVEIRA J C R F,DINIZ J C M,et al. Enhanced digital polarization demultiplexation via CMA step size adaptation for PM-QPSK coherent receivers [C] // 2012 Optical Society of America. Piscataway, NJ:IEEE,2012. DOI:10.1364/OFC.2012.OW3H.4.
[1] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Yan-yan, FENG Jia-li. Algorithm of Digital Audio Watermarking Based on Qualitative Mapping[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 200 -204 .
[2] DENG Min-yi, TAN Hui-li. The Qualitative Study for a Cellular Automata Model with Two Variables[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 1 -6 .
[3] WANG Gui-zhi, LÜ Xiao-jun, LU Jin-shuai, LI Jie. Floating Population Migration Satisfaction Based on AHM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 7 -12 .
[4] LE Mei-long, ZHANG Jian-ze. Seat Inventory Control for Flights Based on Risk-aversion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 27 -33 .
[5] LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51 -54 .
[6] ZHONG Xiang-gui, ZHAO Na, HUANG Xiu-nü, DUAN Jian-liang. On SS-Semipermutable Subgroups and p-Nilpotency of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 14 -17 .
[7] ZHANG Liu-sheng, PAN Cheng-xue, LI Li, SU Gui-fa, HUANG Wan-yun, QIN Jiang-ke, TANG Huang. Synthesis and Crystal Structure of Conformationally ConstrainedDipeptide with 1-Aminocyclopropanecarboxylic Acid Residue[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 37 -42 .
[8] ZHANG Wei, JI Shu-juan, LIANG Yong-quan. Optimal Resource Allocation in Fire Rescue[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 192 -196 .
[9] GUO Jun, CHEN Dan, ZHU Chan, TANG Zongxiang. Analgesic Effect and Analgesic Mechanism of Angelica dahurica Extracts[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 103 -110 .
[10] HU Yucong, ZHANG Manying. Departure Plan and Charging Cost of Electric Bus under Different Charge Modes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 10 -18 .