Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 170-180.doi: 10.16088/j.issn.1001-6600.2020091606

Previous Articles     Next Articles

Establishment of Above-ground Biomass Model and Distribution Characteristics of Pinus massoniana Plantations in Southern Subtropical

LI Yufeng1,2,3, QIN Jiashuang2,4, MA Jiangming1,2,3*, YANG Zhangqi1, LI Mingjin5, LU Shaohao5, SONG Zunrong2,3   

  1. 1. Key Laboratory of Superior Timber Trees Resource Cultivation (Guangxi Academy of Forestry Science), Nanning Guangxi, 530002, China;
    2. Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    4. Guangxi Institute of Botany, the Chinese Academy of Sciences, Guilin Guangxi 541006, China;
    5. Zhenlong State-owned Forest Farm of Guangxi, Hengxian Guangxi 530327, China
  • Revised:2020-10-24 Online:2021-07-25 Published:2021-07-23

Abstract: In order to study the biomass model construction and distribution characteristics of different layers and organs (by leaf, branch, trunk and above-ground) of Pinus massoniana plantations in the near natural recovery process. Young stand, middle-aged stand, mature stand and over mature stand of P. massoniana plantations in Zhenlong forest farm of Hengxian county in southern subtropical area of Guangxi were selected as the research subjects. The results showed that: 1) The trunk and above-ground biomass estimation results were better, followed by leaves and branches. Overall, Model Ⅱ (W=a×Db×Hc) had higher goodness of fit and smaller standard error, and the accuracy of model checking was higher, which could be used as the optimal model for biomass model fitting of different organs in shrub layer at different restoration stages; 2) With the near natural recovery, the order of the branch and trunk biomass of the woody community of P. massoniana plantations and the above-ground biomass of the community was overripe forest > mature forest > middle-aged forest > young forest, and the order of leaf biomass was middle-aged forest > overripe forest > mature forest > young forest. The biomass of each organ in the same community had significant difference among different ages of the same community (P < 0.05). The leaf biomass of woody communities of different forest ages were (2.65±0.01)~(7.77±0.35) t/hm2, the branch biomass were (4.24±0.00)~(24.49±0.11) t/hm2, the trunk biomass were (24.32±0.01)~(236.51±1.22) t/hm2, and the above-ground biomass were (42.73±0.67)~(268.03±1.25) t/hm2, in which the trunk was dominant. Within each forest age in P. massoniana plantations, the order of the above-ground biomass of each layer was arbor layer > shrub layer > herb layer, and the arbor layer was the main body of the above-ground biomass of the P. massoniana populations; 3) With the progress of near natural restoration, the order of above-ground biomass of P. massoniana populations were as follows: overripe forest > mature forest > middle-aged forest > young forest, and the proportion in the community increased first and then decreased. The proportion of leaf, branch and trunk biomass of P. massoniana populations in different restoration stages showed a downward trend. The results provide a scientific basis for the dynamic change researches of community structure of P. massoniana plantations in the near natural recovery process and are helpful to improve the stand productivity and carbon sink capacity.

Key words: biomass, estimation model, different stand ages, Pinus massoniana plantations

CLC Number: 

  • S718.5
[1]WOODBURY P B, SMITH J E, HEATH L S. Carbon sequestration in the U.S. forest sector from 1990 to 2010[J]. Forest Ecology and Management, 2007, 241(1/2/3): 14-27.
[2]辛士冬, 严云仙, 姜立春. 基于不同可加性方法的黑龙江省红松人工林林分生物量模型[J]. 应用生态学报, 2020, 31(10):3322-3330.
[3]曾伟生. 国内外灌木生物量模型研究综述[J]. 世界林业研究, 2015, 28(1): 31-36.
[4]张雅君, 马姜明, 苏静, 等. 桂林岩溶石山檵木群落不同恢复阶段地上生物量模型构建及分配格局[J]. 广西植物, 2019, 39(2): 161-169.
[5]陈宗铸, 陈小花, 陈毅青, 等. 海南岛热带人工林主要树种(组)生物量相容性模型构建[J]. 中南林业科技大学学报, 2019, 39(11): 71-77, 87.
[6]曾伟, 江斌, 余林, 等. 江西杉木人工林生物量分配格局及其模型构建[J]. 南京林业大学学报(自然科学版), 2016, 40(3): 177-182.
[7]王轶夫, 孙玉军. 马尾松生物量模型的对比研究[J]. 中南林业科技大学学报, 2012, 32(10): 29-33.
[8]耿丹, 夏朝宗, 张国斌, 等. 杉木人工林灌木层生物量模型构建[J]. 北京林业大学学报, 2018, 40(3): 34-41.
[9]杜虎, 宋同清, 曾馥平, 等. 桂东不同林龄马尾松人工林的生物量及其分配特征[J]. 西北植物学报, 2013, 33(2): 394-400.
[10]朱教君, 张金鑫. 关于人工林可持续经营的思考[J]. 科学(上海), 2016, 68(4): 37-40.
[11]明安刚, 刘世荣, 李华, 等. 近自然化改造对马尾松和杉木人工林生物量及其分配的影响[J]. 生态学报, 2017, 37(23): 7833-7842.
[12]刘平, 韩金城, 于磊, 等. 辽东山区油松人工林生物量研究[J]. 沈阳农业大学学报, 2019, 50(6): 740-746.
[13]黄云奉, 刘屹, 黄世友, 等. 不同林龄马尾松生长及生物量分配研究[J]. 四川林业科技, 2015, 36(4): 72-75.
[14]周祎, 丁贵杰. 贵州省马尾松人工林生物量及其分布格局研究[J]. 贵州林业科技, 2016, 44(2): 1-7.
[15]宋尊荣, 秦佳双, 李明金, 等. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 149-156.
[16]孙向宁. 太原市不同林龄油松人工林生物量及其分配特征[J]. 安徽农业科学, 2017, 45(24): 155-156, 173.
[17]许文强, 杨辽, 陈曦, 等. 天山森林生态系统碳储量格局及其影响因素[J]. 植物生态学报, 2016, 40(4): 364-373.
[18]宋变兰. 黄土丘陵区两典型森林生态系统生物量、碳氮库和碳固存特征研究[D]. 杨凌:中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015.
[19]秦佳双, 李玉凤, 马姜明, 等. 广西不同气候条件下马尾松人工林生物量模型构建及分配格局[J]. 广西科学, 2020, 27(2): 165-174.
[20]骆期邦, 曾伟生, 贺东北, 等. 立木地上部分生物量模型的建立及其应用研究[J]. 自然资源学报, 1999, 14(3): 271-277.
[21]曾伟生, 肖前辉, 胡觉, 等. 中国南方马尾松立木生物量模型研建[J]. 中南林业科技大学学报, 2010, 30(5): 50-56.
[22]周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量:生物量方程[M]. 北京: 科学出版社, 2018.
[23]杨宪龙, 魏孝荣, 邵明安. 黄土高原北部典型灌丛枝条生物量估算模型[J]. 应用生态学报, 2016, 27(10): 3164-3172.
[24]王飞, 郭玉东, 张秋良. 兴安落叶松林生物量模型的构建[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(4): 44-47.
[25]BOND L B, WANG C, GOWER S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research, 2002, 32(8): 1441-1450.
[26]蔡会德, 农胜奇, 张伟, 等. 广西主要树种立木生物量模型的研建[J]. 林业资源管理, 2014(4): 58-61, 66.
[27]覃世杰, 李况, 莫德祥, 等. 桂东南柳杉人工林生物量回归模型应用研究[J]. 南方农业学报, 2013, 44(2): 261-265.
[28]林力. 马尾松人工林生物量模型的研究[D]. 福州:福建农林大学, 2011.
[29]PEICHL M, LEAVA N A, KIELY G. Above-and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland[J]. Plant and Soil, 2012, 350: 281-296.
[30]马姜明, 梁士楚, 梁月明, 等. 桂林岩溶石山主要灌丛类型地上生物量及分配特征[J]. 广西师范大学学报(自然科学版), 2009, 27(4): 95-98.
[31]汪梦婷, 孙继伟, 李亚麒, 等. 不同苗龄云南松各器官生物量的分配特征研究[J]. 西南林业大学学报(自然科学), 2020, 40(3): 46-51.
[32]卢立华, 李华, 农友, 等. 南亚热带4种人工林生物量及其分配格局[J]. 中南林业科技大学学报, 2020, 40(8): 91-98.
[33]刘茂秀, 史军辉, 王新英, 等. 塔河流域天然胡杨林不同林龄地上生物量及碳储量[J]. 水土保持通报, 2016, 36(5): 326-332, 339.
[34]方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
[35]于维莲, 董丹, 倪健. 中国西南山地喀斯特与非喀斯特森林的生物量与生产力比较[J]. 亚热带资源与环境学报, 2010, 5(2): 25-30.
[36]谢伟东, 叶绍明, 杨梅, 等. 桂东南丘陵地马尾松人工林群落生物量及分布格局[J]. 北华大学学报(自然科学版), 2009, 10(1): 68-71.
[37]张利丽, 王志超, 陈少雄, 等. 不同林龄尾巨桉人工林的生物量分配格局[J]. 西北农林科技大学学报(自然科学版), 2017, 45(6): 61-68.
[38]张林, 黄永, 罗天祥, 等. 林分各器官生物量随林龄的变化规律:以杉木、马尾松人工林为例[J]. 中国科学院研究生院学报, 2005, 22(2): 170-178.
[39]彭玉华, 郑威, 申文辉, 等. 不同径级广西红锥人工林生物量及分配特征[J]. 河南农业大学学报, 2019, 53(3): 343-348.
[40]雷隆举, 赵锦梅, 张雪, 等. 祁连山东段不同植物群落的特征及生物量分配[J]. 草业科学, 2020, 37(5): 853-863.
[41]侯芳, 王克勤, 宋娅丽, 等. 滇中亚高山5种典型森林乔木层生物量及碳储量分配格局[J]. 水土保持研究, 2018, 25(6): 29-35.
[42]申桂艳. 辽东山区不同林龄落叶松林分林木各器官生物量分配特征[J]. 防护林科技, 2017(2): 14-16.
[43]农友, 卢立华, 游建华, 等. 南亚热带不同演替阶段次生林植物多样性及乔木生物量[J]. 中南林业科技大学学报, 2018, 38(12): 83-88.
[1] HU Lening, LI Shuangli, LI Yang, WEI Yizhuang, ZHOU Jinling, SU Yirong, DENG Hua. Effect of Improved Calcium Peroxide on Organic Carbon Mineralization in Gleyed Paddy Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 158-169.
[2] SONG Zunrong, QIN Jiashuang, LI Mingjin, MA Jiangming, ZHONG Fengyue, YANG Zhangqi, YAN Peidong. Study on Root Biomass of Pinus massoniana Plantations in Subtropical China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11 -19 .
[2] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20 -26 .
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[4] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[5] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[6] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[7] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[8] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[9] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[10] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .