Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (2): 81-86.doi: 10.16088/j.issn.1001-6600.2020.02.009

Previous Articles     Next Articles

Shortest-path Exponent and Backbone Exponentof Explosive Percolation Model

WANG Junfeng*, LI Ping   

  1. School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei Anhui 230009, China
  • Received:2019-03-16 Published:2020-04-02

Abstract: The Shortest-path exponent dmin and the Backbone exponent dB are two important critical exponents for characterizing the universality class in phase transition in statistical physics. Due to the lack of exact solutions, the values of dmin and dB can only be estimated by numerical methods, such as Monte Carlo simulation (MC). In this paper, by sampling the graph distance on the complete configuration and the size of the largest cluster on the bridge-free configuration, for the first time, the shortest-path and backbone exponents are estimated for the square-lattice explosive percolation with product rule as dmin=1.189(3) and dB=1.546(5), respectively. The results provide important testing foundations for the future analytical investigations of the critical geometrical properties of the percolation models with non-trivial rules.

Key words: percolation, critical exponent, Monte Carlo simulation, finite-size scaling

CLC Number: 

  • O414.21
[1] 于渌,郝柏林,陈晓松.边缘奇迹相变和临界现象[M].北京:科学出版社,2005:95-110.
[2] FORTUIN C M,KASTELEYN P W.On the random-cluster model: I.Introduction and relation to other models[J].Physica,1972,57(4): 536-564.DOI: 10.1016/0031-8914(72)90045-6.
[3] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9.DOI:10.16088/j.issn.1001-6600.2017.04.001.
[4] 邝先验,吴赟,曹韦华,等.城市混合非机动车流的元胞自动机仿真模型[J].广西师范大学学报(自然科学版),2015,33(1):7-14.DOI:10.16088/j.issn.1001-6600.2015.01.002.
[5] 周金旺,陈秀丽,孔令江,等.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报(自然科学版),2008,26(4):14-17.DOI: 10.16088 /j.issn.1001-6600.2008.04.005.
[6] BROADBENT S R,HAMMERSLEY J M.Percolation processes: 1.crystals and mazes[J].Proceedings of the Cambridge Philosophical Society,1957,53(3): 629-641.DOI: 10.1017/S0305004100032680.
[7] STAUFFER D,AHARONY A.Introduction to percolation theory[M].2nd ed.London: Taylor & Francis,2003: 70-149.
[8] GRIMMETT G R.Percolation[M].Berlin: Springer,1999: 117-280.
[9] ACHLIOPTAS D,D’SOUZA R M,SPENCER J.Explosive percolation in random networks[J].Science,2009, 323(5920): 1453-1455.DOI: 10.1126/science.1167782.
[10]DA COSTA R A,DOROGOVTSEV S N,GOLTSEV A V,et al.Explosive percolation transition is actually continuous[J].Physical Review Letters,2010,105(25): 225701.DOI: 10.1103/PhysRevLett.105.255701.
[11]CLUSELLA P,GRASSBERGER P,PEREZ-RECHE F J,et al.Immunization and targeted destruction of networks using explosive percolation[J].Physical Review Letters,2016,117(20):208301.DOI:10.1103/PhysRevLett.117.208301.
[12]DI FRANCESCO P,SALEUR H,ZUBER J B.Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models[J].Journal of Statistical Physics,1987,49(1/2): 57-79.DOI: 10.1007/bf01009954.
[13]LAWLER G F,SCHRAMM O,WERNER W.The dimension of the planar Brownian frontier is 4/3[J].Mathematical Research Letters,2001,8(4): 401-412.DOI: 10.4310/MRL.2001.v8.n1.a3.
[14]DENG Y J,BLÖTE H W J,NIENHUIS B.Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation[J].Physical Review E,2004,69(2): 026114.DOI: 10.1103/PhysRevE.69.026114.
[15]ZHOU Z Z,YANG J,DENG Y J,et al.Shortest-path fractal dimension for percolation in two and three dimensions[J].Physical Review E,2012,86(6): 061101.DOI : 10.1103/PhysRevE.86.061101.
[16]GRASSBERGER P.Pair connectedness and shortest-path scaling in critical percolation[J].Journal of Physics A: Mathematical and General,1999,32(35): 6233-6238.DOI: 10.1088/0305-4470/32/35/301.
[17]WANG J F,ZHOU Z Z,ZHANG W,et al.Bond and site percolation in three dimensions[J].Physical Review E,2013,87(5): 052107.DOI: 10.1103/PhysRevE.87.052107.
[18]XU X,WANG J F,ZHOU Z Z,et al.Geometric structure of percolation clusters[J].Physical Review E,2014, 89(1): 012120.DOI: 10.1103/PhysRevE.89.012120.
[19]HUANG W,HOU P C,WANG J F,et al.Critical percolation clusters in seven dimensions and on a complete graph[J].Physical Review E,2018,97(2):022107.DOI: 10.1103/PhysRevE.97.022107.
[20]ZIFF R M.Scaling behavior of explosive percolation on the square lattice[J].Physical Review E,2010,82 (5): 051105.DOI: 10.1103/PhysRevE.82.051105.
[21]SWENDSEN R H,WANG J S.Nonuniversal critical dynamics in Monte Carlo simulations[J].Physical Review Letters,1987,58(2): 86-88.DOI: 10.1103/PhysRevLett.58.86.
[1] ZHANG Min,GU Lingyun, ZHOU Xun,LIU Yanhui. Simulation Study of DNA Condensation Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 53-62.
[2] LIAO Guangrui, YANG Yongxu. The Monte Carlo Simulation of J/ψ→γηc→γϕϕat BES III [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 1-6.
[3] LU Siyao, XU Meiping. Research on the Risk Measurement of Stock Index Basedon Mixture-Copula and ARMA-GARCH-t Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 93-101.
[4] XU Lei, DENG Guo-he. Valuation on European Lookback Option under Stochastic Volatility Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 79-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Yuyuan,ZENG Shangyou. Research on LTE Synchronous Frequency Offset Estimation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 32 -37 .
[2] XIA Haiying. Cervical Cell Images Segmentation Based on Improved SLIC Region Merging[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 93 -100 .
[3] SUN Kang, QUAN Hongjun. Evolutionary Analysis of the Majority Game[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 1 -7 .
[4] XU Lun-hui, LIU Jing-ning, ZHU Qun-qiang, WANG Qing, XIE Yan, SUO Sheng-chao. Path Deviation Control of Automatic Guided Vehicle[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 1 -6 .
[5] KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7 -14 .
[6] XIAO Rui-jie, LIU Ye, XIU Xiao-ming, KONG Ling-jiang. State Transfer of Two Mechanical Oscillators in Coupled CavityOptomechanical System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 15 -19 .
[7] HUANG Hui-qiong, QIN Yun-mei. Overtaking Model Based on Drivers’ Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 20 -26 .
[8] YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27 -31 .
[9] YANG Pan-pan, ZHU Long-ji, CAO Meng-jie. TSC Type of Reactive Power Compensation Control SystemBased on STM32[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 32 -37 .
[10] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38 -44 .