Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (3): 119-125.doi: 10.16088/j.issn.1001-6600.2017.03.015

Previous Articles     Next Articles

The Research on Functional Type of Tropical Forest WoodyPlants Classification on Hainan Island, China

JIANG Yong1, 2*, YANG Donglin1, ZHUANG Fenghong1, LIU Runhong1, WEI Huahai1, PAN Yuanfang1   

  1. 1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, GuilinGuangxi 541006, China;
    2. College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: Statistical analysis of 5 functional traits on 2 282 woody plant species on the Hainnan Island showed that the species richness of tree growth-form plays a predominant role, followed by the shrub and linas <5 m, [5 m, 15 m) and [15 m, 25 m) height classes in species richness accounted for the most and they are 977, 767 and 376, respectively. Animal disperal mode played mainly important role in all the disperal modes, the second was the wind disperal mode, and water disperal mode were the fewest and they are 1 158, 91 and 31, respectively. Species richness with no thorns were significantly greater than those of non-thorn and they are 165 and 2 117, respectively. Berries, capsule and nuts played dominant role in fruit types. The findings indicate that the dsitibutions of plants with different functional traits reflected that plants are able to adapt to different habitat conditions on the Hainan Island.

Key words: growth type, height class, disperal mode, drought heat resistance, fruit type

CLC Number: 

  • Q948.122
[1] MUELLER D D, ELLENBERG H. Aims and methods of vegetation[M]. New York: John Wiley and Sons, 1974: 139-147.
[2] WHITTAKER R H. Communities and ecosystems[M]. New York: Macmillan Company, 1970: 6-17.
[3] GAO X,CHEN L. The revision of plant life-form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China[J]. Acta Phytoecologica Sinica, 1998, 40 (6): 553-559.
[4] CLARK D A, CLARK D B. Assessing the growth of tropical rain forest trees: issues for forest modeling and management[J]. Ecological Applications, 1999, 9(3): 981-997.
[5] TURNER I M. The ecology of trees in the tropical rain forest[M]. Cambridge: Cambridge University Press, 2001.
[6] 杨跃军, 王保平. 森林土壤种子库与天然更新[J]. 应用生态学报, 2001, 12(2): 304-308.
[7] 郑景明, 桑卫国, 马克平. 种子的长距离风传播模型研究进展[J]. 植物生态学报, 2004, 28(3): 414-425.
[8] 李宏俊, 张知彬. 动物与植物种子更新的关系:I.对象,方法与意义[J]. 生物多样性, 2000, 8(4): 405-412.
[9] 高润宏, 刘庭玺, 张昊, 等. 大青沟木本植物果实类型组成与环境演变研究[J]. 干旱区资源与环境, 2005, 19(S1): 174-178.
[10] 贺猛, 米锴. 山东省常见带刺植物研究[J]. 安徽农业科学, 2009, 37(4): 1703-1705.
[11] 刘万德, 臧润国, 丁易, 等. 海南岛霸王岭热带季雨林树木的死亡率[J]. 植物生态学报, 2010, 34(8): 946-956.
[12] 邢福武. 海南植物物种多样性编目[M]. 武汉: 华中科技大学出版社, 2012.
[13] 胡玉佳, 李玉杏. 海南岛热带森林[M]. 广州: 广东高等教育出版社, 1992: 13-26.
[14] 龙文兴. 海南岛热带云雾林群落结构及组配机制研究[D]. 北京: 中国林业科学研究院, 2011.
[15] 中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1959-2004.
[16] 陈焕镛. 海南植物志[M]. 北京: 科学出版社, 1964.
[17] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335-380.
[18] CORNELISSEN J H C, CERABOLINI B, CASTRO-DIEZ P, et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings[J]. Journal of Vegetation Science, 2003, 14(3): 311-322.
[19] DING Y, ZANG R, LIU S,et al. Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation[J]. Biological Conservation, 2012, 145(1): 225-233.
[20] R Development Core Team. R: a language and environment for statistical computing R foundation for statistical computing[M]. Vienna, Austria: computing, 2011.
[21] WEBB L J. A physiognomic classification of Austrlian rain forests[J]. The Journal of Ecology, 1959, 47(3): 551-570.
[22] RICHARDS P W. The tropical rain forest: an ecological studies[M]. 2nd ed. Cambridge: Cambridge University Press, 1996.
[23] WYATT S J. Stems per acre and topography[J]. Malayan Forester, 1960, 23: 57-58.
[24] ASHTON P S. Ecological studies in the mixed dipterocarp forests of Brunei State[J]. The Journal of Ecology, 1967, 55(1): 237-238.
[25] THOMAS S C, BAZZAZ F A. Asymptotic height as a predictor of photosynthetic characteristic in Malaysian rain forest trees[J]. Ecology,1999, 80: 1607-1622.
[26] SWAIN W D. Long-term studies of tropical forest dynamics, in long-term experiments in agriculture and ecological sciences[M]. JOHNSTON A E. Wallingford: CAB International, 1994: 305-320.
[27] MANOKARAN N, KOHCHUMMEN K M. Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in Peninsular Malaysia[J]. Jornal of Tropical Ecology, 1987, 3(4): 315-330.
[28] KINGD A. The allometry and life history of tropical trees[J]. Journal of Tropical Ecology, 1996, 12(1): 25-44.
[29] KOHYAMA T. Size-structured tree populations in gapdynamic forest: the forest architecture hypothesis for the stable coexistence of species[J]. Journal of Ecology, 1993, 81(1): 131-143.
[30] THOMAS S C. Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees[J]. American Journal of Botany, 1996, 83(5): 556-566.
[31] WHITMORE T C. Tropical rain forests of the far east[M]. Oxford: Clarendon Press, 1984.
[32] JONES E W. Ecological studies on the rain forest of southern Nigeria: IV. The plateau forest of the Okomu Forest Reserve, Part 2. The reproduction and history of the forest[J]. Journal of Ecology, 1956, 44(1): 83-117.
[33] McHARGUE L A, HARTSHORN G S. Seed and seedling ecology of Carapa guianensis[J]. Turrialba, 1983, 33: 399-404.
[34] ROOSMALEN M G. Fruits of the Guianan Flora[M]. Utrecht: Institute of Systematic Botany, 1985.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!