Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (1): 67-73.doi: 10.16088/j.issn.1001-6600.2015.01.011

Previous Articles     Next Articles

The Structure of a Class of Finite Rings with Zero Divisors

TANG Gao-hua, LI Yu, ZHANG Heng-bin, WU Yan-sheng   

  1. School of Mathematics and Statistics, Guangxi Teachers Education University, Nanning Guangxi 530001, China
  • Received:2014-12-08 Online:2015-03-15 Published:2018-09-17

Abstract: The structure of a finite ring is very relative with the number of the zero divisors of the ring. In this paper, by using the structure theorem of semisimple rings, the properties of the unit group of a finite ring, the relationship among the order of the Jacobson root of the ring for a finite ring, the order of the ring and the order of the unit group of the ring, etc., the structure of the rings with n(n≥2) left zero divisors and n(n-6)<|R|

Key words: finite ring, zero divisor, the order of a ring

CLC Number: 

  • O153.3
[1] 林莉,易忠,邓培民. 有限交换环上的线性元胞自动机[J].广西师范大学学报:自然科学版,2005,23(3):25-28.
[2] 唐高华, 苏华东,赵寿祥. Zn[i]的零因子图性质[J]. 广西师范大学学报:自然科学版,2007,25(3):32-35.
[3] NAN Ji-zhu, WEI Yang-jiang, TANG Gao-hua. The fundamental constituents of iteration digraphs of finite commutative rings[J]. Czechoslovak Math J, 2014,64(1):199-208.
[4] TANG Gao-hua, WEI Yang-jiang, LI Yuan-lin. Unit groups of group algebras of some small groups[J]. Czechoslovak Math J, 2014,64(1):149-157.
[5] HUANG Lin, CHEN Wei-ning, TANG Gao-hua, et al. Adjacency matrices of zero-divisor graphs of some finite commutative rings[J]. J Guangxi Teachers Education University: Natural Science Edition, 2013, 30(1):9-13.
[6] WEI Yang-jiang, TANG Gao-hua, SU Hua-dong. The square mapping graphs of finite commutative rings[J]. Algebra Colloquium, 2012,19(3): 569-580.
[7] 樊恽,刘宏伟. 有限环上的齐次重量与Möbius函数[J], 数学年刊,2010,31A(3):355-364.
[8] BINI G, FLAMINI F. Finite commutative rings and their applications[M]. Dordrecht: Kluwer Academic Publishers, 2002.
[9] WAN Zhe-xian. Lectures on finite fields and galois rings[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2003.
[10] De ANDRADE A A, PALAZZO R Jr. Construction and decoding of BCH codes over finite commutative rings[J]. Linear Algebra and Its Applications, 1999,286(1/3):69-85.
[11] GANESAN N. Properties of rings with a finite number of zero divisors[J]. Math Ann, 1964, 157(3): 215-218.
[12] KOH K. On “properties of rings with a finite number of zero divisors”[J]. Math Ann, 1967, 171(1): 79-80.
[13] 谭季伟,邱琦章. 元素等于零因子个数的平方的环[J]. 数学杂志,1981,1(2):180-184.
[14] 吴品三. 具有有限左零因子的一类环的结构[J]. 北京师范大学学报:自然科学版,1983(3):1-6.
[15] 陈汉卿,侯瑞. 零因子个数为n,阶数为n2/2的环[J]. 天津师范大学学报:自然科学版,1999,19(1):10-14.
[16] 王俊民. 一类具有有限零因子的环[J]. 云南大学学报:自然科学版,1984,6(4):29-32.
[17] 张明善. 关于有限零因子环[J]. 西南师范大学学报:自然科学版,1989,14(1):25-29.
[18] 张明善. 关于有限零因子环的上界[J]. 西南师范大学学报:自然科学版,1991,16(3):306-311.
[19] 刘绍武. 一类具有n(n>5)个零因子的环[J]. 黑龙江大学自然科学学报,1992,9(2):13-16.
[20] 王文省. pq阶环[J]. 曲阜师范大学学报:自然科学版,1994,20(4):39-41.
[21] 南基洙. 同调代数导论[M]. 大连:大连理工大学出版社,2011.
[22] McDONALD B R. Finite rings with identity[M]. New York: Marcel Dekker INC, 1974.
[23] LAM T Y. A first course in noncommutative rings [M]. New York: Springer,1991:118-123.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!