Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (2): 88-94.

Previous Articles     Next Articles

Optimization of Silk Fibroin Extraction by Alkali Degumming and Spectra of Its Conformation in Solution

CHENG Lei1,2, XIN Wei-biao1, LIU Zhi-xu1, WANG Zhuo-yuan1, SHEN Xing-can1   

  1. 1. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Science and Technology Department, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2013-10-11 Online:2014-06-25 Published:2018-09-25

Abstract: Degumming conditions of silkworm cocoon produced in Guangxi province were optimized by the method of alkali degumming. The degumming rates of silkworm were checked by the carmine of picric acid and SEM. It is showed that the silkworm can be degummed clearly with the condition of 30 min, two times and 1:200 of bath ratio for degumming. Silk fibroin can be prepared by dissolution and degumming of three solvents of CaCl2-EtOH-H2O, LiBr-H2O and LiBr-EtOH-H2O. The conformation of silk fibroin was characterized by the optical spectroscopy of Raman and IR. The silk is mainly the conformation of β-folding by alkali degumming. After dissolving and degumming the silk, the random coil is mainly the conformation of silk fibroin. Comparing with three dissolving systems, it is showed that alcohol is better for the formation of the conformation of the random coil for silk fibroin, and Li+ has more influence than Ca2+ for secondary structure of silk fibroin.

Key words: alkali degumming, silk fibroin, IR spectra, Raman spectra, conformation

CLC Number: 

  • TQ321.4
[1] 刘永成,邵正中,孙玉宇. 蚕丝蛋白的结构和功能[J]. 高分子通报, 1998, 3: 17-23.
[2] LI Xin-gui, WU Li-ya, HUANG Mei-rong, et al. Conformational transition and liquid crystalline state of regenerated silk fibroin in water[J]. Biopolymers, 2008, 89(6): 497-505.
[3] YANG Yu-hong, SHAO Zheng-zhong, CHEN Xin, et al. Optical spectroscopy to investigate the structure of regenerated bombyx mori silk fibroin in solution[J]. Biomacromolecules, 2004, 5(3): 773-779.
[4] ZHAO Chun-xia, WU Xiu-fang, ZHANG Qiang, et al. Enzymatic degradation of antheraea pernyi silk fibroin 3D scaffolds and fibers[J]. International Journal of Biological Macromolecules, 2011, 48(2): 249-255.
[5] YAMADA H, NAKAO H, TAKASU Y, et al. Preparation of undegraded native molecular fibroin solution from silkworm cocoons[J]. Materials Science and Engineering: C, 2001, 14(1/2): 41-46.
[6] 朱良均, 姚菊明, 李幼禄. 蚕丝蛋白-丝胶和丝素凝胶特性的比较[J]. 科技通报, 1998, 1: 13-17.
[7] WRAY L S, HU Xiao, GALLEGO J, et al. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011, 99B(1): 89-101.
[8] ZHU Lin, HU Ren-ping, WANG Hai-yan, et al. Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10298-10302.
[9] 朱正华, 朱良均, 陆旋. 丝素蛋白粉制备工艺研究[J]. 氨基酸和生物资源, 2003, 3: 37-40.
[10] AJISAWA A. Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution[J]. Journal of Sericultural Science of Japan, 1998, 67(2): 91-94.
[11] SIONKOWSKA A, PLANECKA A. The influence of UV radiation on silk fibroin[J]. Polymer Degradation and Stability, 2011, 96(4): 523-528.
[12] CAO Zheng-bing, CHEN Xin, YAO Jin-rong, et al. The preparation of regenerated silk fibroin microspheres[J]. Soft Matter, 2007, 3(7): 910-915.
[13] WANG Xiao, QIU Yi-wei, CARR A J, et al. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming[J]. Biomedical Materials, 2011, 6(3):035010.
[14] 王群, 齐鲁. 聚乙烯醇接枝丝素蛋白的制备和性能[J]. 化工新型材料, 2012, 1: 76-78.
[15] 钱国坻, 姚予梁. 红外光谱在蚕丝纤维结构研究中的应用[J]. 苏州大学学报: 工科版, 1983, 4: 26-31.
[16] LENORMANT H. Infra-red spectra and structure of the proteins of the silk glands[J]. Transactions of the Faraday Society, 1956, 52: 549-553.
[17] 吴章伟, 冯新星, 朱海霖. 不同溶解体系的丝素蛋白分子质量及对再生丝素膜性能的影响[J]. 蚕业科学, 2010, 36: 707-712.
[18] CHEN Xin, KNIGHT D P, SHAO Zheng-zhong, et al. Regenerated bombyx silk solutions studied with rheometry and FT IR[J]. Polymer, 2001, 42(25): 09969-09974.
[19] 邵正中, 吴冬, 李光宪. 用拉曼光谱研究蚕丝蛋白的结构与功能的关系[J]. 光散射学报, 1995, 1: 2-7.
[20] SHAO Z, VOLLRATH F, SIRICHAISIT J, et al. Analysis of spider silk in native and supercontracted states using Raman spectroscopy[J]. Polymer, 1999, 40(10): 2493-2500.
[21] LORD R C, YU Nai-teng. Laser-excited Raman spectroscopy of biomolecules: I. Native lysozyme and its constituent amino acids[J]. Journal of Molecular Biology, 1970, 50(2): 509-524.
[22] 杭怡春, 张耀鹏, 金媛. 丝胶组分和高湿后处理对静电纺丝素纤维结构与性能的影响[J]. 高分子材料科学与工程, 2012, 4: 62-65.
[23] 许以明. 拉曼光谱及其在结构生物学中的应用[M]. 北京: 化学工业出版社, 2005: 11-35.
[24] 解谷声. 丝素用氯化钙/乙醇水溶液溶解[J]. 辽宁丝绸, 1999, 3: 39-40.
[25] 周文, 陈新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究[J] . 化学进展, 2006, 11: 1514-1522
[1] ZHANG Liu-sheng, PAN Cheng-xue, LI Li, SU Gui-fa, HUANG Wan-yun, QIN Jiang-ke, TANG Huang. Synthesis and Crystal Structure of Conformationally ConstrainedDipeptide with 1-Aminocyclopropanecarboxylic Acid Residue [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 37-42.
[2] HUANG Wan-yun, SU Gui-fa, PAN Cheng-xue, QIN Jiang-ke, TANG Huang, YI Xiang-hui. Synthesis and Crystal Structure of Conformationally Constrained Peptides with a Trans-2,3-diaryl-1-aminocyclopropanecarboxylic Acid Residue [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!