Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (2): 75-81.

Previous Articles     Next Articles

Li-Yorke Chaotic Set and ω-Chaotic Set of the Generalized Symbolic Dynamical Systems

LIU Long-sheng, KANG Yun-lian, ZHAO Jun-ling   

  1. College of Mathematics and Statistics,Guangxi Normal University, Guilin Guangxi 541004,China
  • Received:2014-02-06 Online:2014-06-25 Published:2018-09-25

Abstract: In this article,a Li-Yorke chaotic set, that is transitive, invariant and uncountable, is constructed in the generalized symbolic dynamical system Σ(Z+) and the chaotic set $\widetilde{D}\subset$Σ(Z+)\∪∞N=2Σ(N) is further proved. Moreover a ω-chaotic set is then constructed and the chaotic set S′$\subset$Σ(Z+)\∪∞N=2Σ(N) is also proved. It shows that the chaotic properties of generalized symbolic dynamical system do not focus on the symbolic dynamical system in which the number of symbolic is limited. It has very strong chaotic property outside the symbolic dynamical system with limited number of symbolic ∪∞N=2Σ(N).

Key words: Li-Yorke chaotic set, ω-chaotic set, invariant set, transitive point

CLC Number: 

  • O19
[1] 傅新楚,周焕文.一般符号动力系统的浑沌性态[J].应用数学和力学,1992,13(2):103-109.
[2] 李文波,刘磊.广义符号动力系统上的Li-Yorke混沌集[J].商丘师范学院学报,2008,24(6):38-40.
[3] 李文波.拓扑动力系统上的(伪)转移不变集[D].西安:西北大学,2006.
[4] 陈秀庆.一般符号动力系统的子移位的拓扑混合[D].杭州:浙江大学,2003.
[5] SNOHA L.Dense chaos[J].Comment Math Univ Carolinae,1992,33(4): 747-752.
[6] PIOREK J.On the generic chaos in dynamical systems[J].Univ Lagel Acta Math,1985,25: 293-298.
[7] BRUCKNER A M, HU T. On scrambled sets for chaotic functions[J]. Trans Amer Math Soc,1987, 301(1): 289-297.
[8] OPROCHA P.Distributional chaos revisited[J]. Trans Amer Math Soc, 2009, 361(9): 4901-4925.
[9] DU Bau-sen. On the invariance of Li-Yorke chaos of interval maps[J].J Difference Equ Appl, 2005, 11(9): 823-828.
[10] LI Shi-hai. ω-chaos and topological entropy[J]. Trans Amer Math Soc, 1993, 339(1): 243-249.
[11] GUIRAO J L G, LEMPART M.Relations between distributional,Li-Yorke and ω chaos[J].Chaos, Solitions & Fractals, 2006,28(3): 788-792.
[12] MORSE M, HEDLUND G A.Symbolic dynamics II: sturmian trajectories[J].Amer J Math 1940,62(1):1-42.
[1] DENG Jin-hong, ZHAO Jun-ling. SS Chaotic Set in Set of Non-recurrent Points [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!