Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (2): 75-81.
Previous Articles Next Articles
LIU Long-sheng, KANG Yun-lian, ZHAO Jun-ling
CLC Number:
[1] 傅新楚,周焕文.一般符号动力系统的浑沌性态[J].应用数学和力学,1992,13(2):103-109. [2] 李文波,刘磊.广义符号动力系统上的Li-Yorke混沌集[J].商丘师范学院学报,2008,24(6):38-40. [3] 李文波.拓扑动力系统上的(伪)转移不变集[D].西安:西北大学,2006. [4] 陈秀庆.一般符号动力系统的子移位的拓扑混合[D].杭州:浙江大学,2003. [5] SNOHA L.Dense chaos[J].Comment Math Univ Carolinae,1992,33(4): 747-752. [6] PIOREK J.On the generic chaos in dynamical systems[J].Univ Lagel Acta Math,1985,25: 293-298. [7] BRUCKNER A M, HU T. On scrambled sets for chaotic functions[J]. Trans Amer Math Soc,1987, 301(1): 289-297. [8] OPROCHA P.Distributional chaos revisited[J]. Trans Amer Math Soc, 2009, 361(9): 4901-4925. [9] DU Bau-sen. On the invariance of Li-Yorke chaos of interval maps[J].J Difference Equ Appl, 2005, 11(9): 823-828. [10] LI Shi-hai. ω-chaos and topological entropy[J]. Trans Amer Math Soc, 1993, 339(1): 243-249. [11] GUIRAO J L G, LEMPART M.Relations between distributional,Li-Yorke and ω chaos[J].Chaos, Solitions & Fractals, 2006,28(3): 788-792. [12] MORSE M, HEDLUND G A.Symbolic dynamics II: sturmian trajectories[J].Amer J Math 1940,62(1):1-42. |
[1] | DENG Jin-hong, ZHAO Jun-ling. SS Chaotic Set in Set of Non-recurrent Points [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 40-44. |
|