Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (3): 84-88.

Previous Articles     Next Articles

Truth Degree Theory of 3-valued Fuzzy Logic System Based onFrank Triangular Norm

MA Ying-cang, ZHANG Mei, CUI Mei-ying   

  1. School of Science,Xi'an Polytechnic University,Xi'an Shaanxi 710048,China
  • Received:2011-06-15 Online:2011-08-20 Published:2018-12-03

Abstract: By means of the function induced by a logical formulaA,the concept of integral truth of the logical formula A is introducedin 3-valued R-implication fuzzy logic system based on Frank Triangular Norm,and some reasoning rules of truth degree based on 3-valued R-implication logic system are given.Moreover,the similarity degree and pseudo-distance betweentwo formulas are defined by using the truth degree concept,and their propertiesare discussed.This offers a theoretical framework for approximate reasoning inFrank Triangular Norm proposition logic system.

Key words: truth degree, similarity degree, pseudo-distance

CLC Number: 

  • O141.1
[1] ZADEH L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Trans Systems,Man and Cybernetics,1973,1(1):28-44.
[2] PAVELKA J.On fuzzy logic Ⅰ,Ⅱ,Ⅲ[J].Zeitschrf Math Logic and Grundlagen d Math,1979,25(1):45-52,119-134,447-464.
[3] YING Ming-sheng.The fundamental theorem of ultra product in pavelka's logic[J].Z Math Logic Grundlagen Math,1992,38(2):197-201.
[4] XU Yang,LIU Jun,SING Zhen-ming.On semantics of
L-valued first order logic Lvpl[J].Int J General System,2000,29(1):53-79.
[5] WANG Guo-jun.On the logic foundation of fuzzy reasoning[J].InformationScience,1999,117(1):47-88.
[6] 林运国,陈晓云,胡山立,等.多Agent模糊概率信念逻辑[J].广西师范大学学报:自然科学版,2008,26(1):150-153.
[7] 王国俊.非经典逻辑与近似推理[M].北京:科学出版社,2000:116-139.
[8] 王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215.
[9] 王国俊,傅丽,宋建社.二值命题逻辑中命题的真度理论[J].中国科学:A辑,2001,31(11):998-1008.
[10] 王国俊,钱桂生,党创寅.命题演算系统
L*与谓词演算系统K*中统一的近似推理理论[J].中国科学:E辑,2004,34(10):1110-1122.
[11] 王国俊,王伟.逻辑度量空间[J].数学学报,2001,44(1):159-168.
[12] 韩邦合,王国俊.二值逻辑中命题的条件真度理论[J].模糊系统与数学,2007,21(4):9-15.
[13] LI Jun,WANG Guo-jun.Theory of truth degrees of propositions in the logic system[J].Science in China:Series F,2006,49(4):471-483.
[14] 王国俊,李璧镜.Lukasiewicz
n值逻辑中公式的真度理论和极限定理[J].中国科学:E辑,2005,35(6):561-569.
[15] 李骏,孟新友,李建生.三值标准序列逻辑中的
α-真度理论[J].兰州理工大学学报,2007,33(1):143-145.
[16] 惠小静.三值
R0命题逻辑系统的随机化[J].应用数学学报,2009,32(1):19-27.
[17] 左卫兵.
n值命题逻辑中的P-随机真度及近似推理[J].计算机工程与应用,2009,45(7):42-43.
[18] 惠小静,刘兴祥.三值Go¨del命题逻辑系统的随机化[J].模糊系统与数学,2009,23(4):1-7.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!