Journal of Guangxi Normal University(Natural Science Edition) ›› 2010, Vol. 28 ›› Issue (3): 29-32.
Previous Articles Next Articles
LI Chang-wen1, YU Qiu2
CLC Number:
[1] BALLESTER-BOLINCHES A,PEDRAZA-AGUILERA M C.Sufficient conditions for supersolubility of finite grou-ps[J].J Pure and Applied Algebra,1998,127(2):113-118. [2] WANG Yan-ming.c-Normality of groups and its properties[J].J Algebra,1996,180(3):954-965. [3] SKIBA A N.On weakly s-permutable subgroups of finite groups[J].J Algebra,2007,315(1):192-209. [4] LI Yang-ming,QIAO Shou-hong,WANG Yan-ming.On weakly s-permutably embedded subgroups of finite groups[J].Communications in Algebra,2009,37(3):1086-1097. [5] WEI Hua-quan,WANG Yan-ming.On CAS-subgroups of finite groups[J].Israel J Math,2007,159:175-188. [6] LI Yang-ming,WANG Yan-ming,WEI Hua-quan.On p-nilpotency of finite groups with some subgroups π-quasinormally embedded[J].Acta MathHungar,2005,108(4):283-298. [7] LI Yang-ming,WANG Yan-ming,WEI Hua-quan.The influence of π-quasinormality of some subgroups of a finite gr-oup[J].Arch Math,2003,81:245-252. [8] GUO Wen-bin.The theory of classes of groups[M].Beijing:Science Press-Kluwer Academic Publishers,2000. [9] HUPPERT B.Endiche gruppen Ⅰ[M].Berlin:Springer-Verlag,1967. [10] GUO Xiu-yun,SHUM K P.On c-normal subgroups of finite groups[J].Publ Math Debrecen,2001,58(1):85-92. [11] THOMPSON J G.Normal p-complements for finite groups[J].J Algebra,1964,1(1):43-46. [12] GORENSTEIN D.Finite groups[M].New York:Chelsea,1968. [13] ROBINSON D J S.A course in the theory of groups[M].Berlin:Springer-Verlag,1993. |
[1] | LI Xian-chong, LI Xian-hua. Influence of Weakly -supplemented Subgroups on theStructure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 25-28. |
[2] | ZHONG Xiang-gui, ZHAO Na, HUANG Xiu-nü, DUAN Jian-liang. On SS-Semipermutable Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 14-17. |
[3] | LU Jia-kuan, MENG Wei. On π-quasinormal Subgroup of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 35-37. |
|