Journal of Guangxi Normal University(Natural Science Edition) ›› 2010, Vol. 28 ›› Issue (3): 182-186.

Previous Articles     Next Articles

Predict Mechanical Properties of Hot-Rolling Steel by Using RBF Neural Network

MA Wen-bo, WU Bin, ZHU Tian, YANG Juan   

  1. Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Received:2010-04-20 Online:2010-09-20 Published:2023-02-06

Abstract: Because of the complex series of phase and physical change,as well as large amounts of data in hot rolling of steel strip production process,the basic method of data mining can be used to model,extract rules and achieve the performance prediction and function evaluation of hot rolling strip production.The article uses radial basis function (RBF) neural network to model,and implement the performance prediction of hot rolling strip production.The RBF neural network is better than the traditional BP neural network when considering approximation capabilities,learning rate and so on.This paper shows the superiority of RBF neural network according to the network structures of RBF and BP.

Key words: hot rolling steel, radial basis function neural network, BP neural network

CLC Number: 

  • TP301
[1] 赵书军,梅燕,王蓉.一种基于粗集理论的BP神经网络加速算法[J].四川师范大学学报:自然科学版,2002,25(5):479-483.
[2] 余华,曹亮,李启元.BP神经网络算法的改进及其在手写体汉字识别中的应用[J].江西师范大学学报:自然科学版,2009,33(5):598-603.
[3] SAXEN H,PETTERSSON F.A data mining method applied to a metallurgical process[C]//Proceedings of the 2007 IEEE Symposium on Computational Intelligenceand Data Mining.Honolulu,HI:IEEE,2007:368-375.
[4] 贾涛,刘振宇,胡恒法,等.基于贝叶斯神经网络的SPA-H热轧板力学性能预测[J].东北大学学报:自然科学版,2008,29(4):521-524.
[5] 邢进生,万百五.两阶段混合算法及其在热轧数据建模中的应用[J].西安交通大学学报,2000,34(12):105-107.
[6] 王继成,黄源,武港山,等.一种两阶段的神经网络属性选择方法[J].广西师范大学学报:自然科学版,2003,21(1):41.
[7] 邢进生,刘人境,汪应洛,等.基于加工工序的高维多输入层神经网络及应用[J].系统工程理论与实践,2004,24(2):63-67.
[8] MOODY J,DARKEN C J.Fast learning in networks of locally turned processing units[J].Neural Computation,1989,1(2):281-294.
[9] CHEN S,COWAN C F N,GRANT P M.Orthogonal least squares learningalgorithmfor radial basis function networks[J].IEEE Transactions on Neural Networks,1991,2(2):302-309.
[10] 张莉,姜浩,蒲安建.基于广义径向基函数的神经网络分类预测[J].计算机技术与发展,2009,19(3):106-109.
[1] TIAN Sheng, LI Chengwei, HUANG Wei, WANG Lei. Forecasting Method of Highway Freight Volume Based on GC-rBPNN Model during COVID-19 Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 24-32.
[2] LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120.
[3] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[4] ZHONG Haixin, QIU Senhui, LUO Xiaoshu, TANG Tang, YANG Li, ZHAO Shuai. Study of Applying BP Neural Network with Inertia Term Self-tuningto Attitude Stability of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 24-31.
[5] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
[6] CHEN Jin, LUO Xiao-shu. Extraction and Recognition of Cell Image Feature Basedon Wavelet Transform and Invasive Weed Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 22-28.
[7] HUANG Jing, LUO Xiao-shu. Application of BP Neural Network in Ice Accretion over Transmission Line [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!