Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 247-257.doi: 10.16088/j.issn.1001-6600.2024082203

• Medicinal Resources Research • Previous Articles     Next Articles

Secondary Metabolites and Biological Activities of Halophilic Fungus Cladosporium cladosporioides GXIMD 00533

FU Chunqing1,2, LIANG Chunxiang1,2, LIANG Lifen1,2, GAO Chenghai1,2, LIU Yonghong1,2, XU Xinya1,2*   

  1. 1. Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning Guangxi 530200, China;
    2. Guangxi Key Laboratory of Marine Drugs (Guangxi University of Chinese Medicine), Nanning Guangxi 530200, China
  • Received:2024-08-22 Online:2025-03-05 Published:2025-04-02

Abstract: The secondary metabolites of Cladosporium cladosporioides GXIMD 00533 from Guangxi Beihai Zhulin Salt Field, were studied by using high salinity medium. The fungal extract was separated and purified by silica gel, reversed phase ODS column chromatography and semi-preparative high performance liquid chromatography (HPLC) to obtain 16 compounds. Their structures were elucidated by NMR spectral data and identified as four lactone compounds: iso-cladospolide B (1), cladospolide B (2), pandangolide 1 (3), thiocladospolide F (4), two sterol compounds: cladosporisteroid B (5) and (22E,24R)-3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (6), seven diketopiperazine: brevianamide F (7), N-acetyl-L-phenylalanine (8), cyclo (L-Pro-L-Leu) (9), cyclo (L-Ala-L-Leu) (10), cyclo (L-Val-L-Ala) (11), cyclo (L-Gly-L-Ile) (12), cyclo (L-Leu-L-Gly) (13), one amino acid: L-tryptophan (14), and two fatty acids: cladosporacid B (15) and (4R,5S,11R,2E)-4,5,11-trihydroxy-2-dodecenoate (16). The antioxidant, antibacterial, α-Glucosidase inhibitory, cytotoxic activities, anti-barnala adhesion and acetylcholinesterase inhibitory activities of all compounds were evaluated. Compounds 6 and 14 had significant iron ion reduction and antioxidant capacity. Compound 6 exhibited inhibitory activities on α-glucosidase with IC50 of 2.662 μmol·L-1; Compound 4 had significant anti-barnacle adhesion activity, and the anti-adhesion rate was 100%. Some of the compounds showed certain acetylcholinesterase activity, and the inhibitory rate of compound 5 reached 54.98%.

Key words: marine salt field, halophilic fungus, Cladosporium, secondary metabolite, marine fungus

CLC Number:  Q936; TQ28; P745
[1] HUANG Z H, NONG X H, LIANG X, et al. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025[J]. Tetrahedron, 2018, 74(21): 2620-2626. DOI: 10.1016/j.tet.2018.04.010.
[2] 董锦润,李靖,陈玉惠,等.枝孢属真菌次生代谢产物中化学成分及其生物活性的研究进展[J].中草药,2021,52(19):6076-6087.DOI: 10.7501/j.issn.0253-2670.2021.19.031.
[3] SALVATORE M M, ANDOLFI A, NICOLETTI R. The genus Cladosporium: a rich source of diverse and bioactive natural compounds[J]. Molecules, 2021, 26(13): 3959. DOI: 10.3390/molecules26133959.
[4] WANG L P, HAN X L, ZHU G L, et al. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha[J]. Frontiers in Chemistry, 2018, 6: 344. DOI: 10.3389/fchem.2018.00344.
[5] CAO F, YANG Q, SHAO C L, et al. Bioactive 7-oxabicyclic[6.3.0] lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. fungus[J]. Marine Drugs, 2015, 13(7): 4171-4178. DOI: 10.3390/md13074171.
[6] ZHANG F Z, LI X M, MENG L H, et al. Cladocladosin A, an unusual macrolide with bicyclo 5/9 ring system, and two thiomacrolides from the marine mangrove-derived endophytic fungus, Cladosporium cladosporioides MA-299[J]. Bioorganic Chemistry, 2020, 101: 103950. DOI: 10.1016/j.bioorg.2020.103950.
[7] MÉJANELLE L, LÒPEZ J F, GUNDE-CIMERMAN N, et al. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments[J]. Journal of Lipid Research, 2001, 42(3): 352-358. DOI: 10.1016/S0022-2275(20)31658-8.
[8] 陈显强,邢楠楠,黄亮华,等.嗜盐真菌多样性及其抗肿瘤活性研究[J].广西科学,2020,27(5):526-531.DOI: 10.13656/j.cnki.gxkx.20201231.01.
[9] 李海艳,陆春菊,张耿思,等.北海竹林盐场极端嗜盐真菌的多样性及其抑菌活性研究[J].广西科学,2023,30(3): 478-484.DOI: 10.13656/j.cnki.gxkx.20230710.006.
[10] 袁凤娟,于璐,张萌,等.面包树树叶类黄酮提取工艺优化及抗氧化性评价[J].广西科学,2022,29(6):1141-1150.DOI: 10.13656/j.cnki.gxkx.20230110.014.
[11] BENZIE I F, STRAIN J J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration[J]. Methods in Enzymology, 1999, 299: 15-27. DOI: 10.1016/s0076-6879(99)99005-5.
[12] ZHENG Y, ZHANG R F, HUANG F, et al. α-Glucosidase inhibitors derived from black soybean and their inhibitory mechanisms[J]. LWT, 2023, 189: 115502. DOI: 10.1016/J.LWT.2023.115502.
[13] ZHANG J, TANG X L, HAN X, et al. Sarcoglaucins A-I, new antifouling cembrane-type diterpenes from the South China Sea soft coral Sarcophyton glaucum[J]. Organic Chemistry Frontiers, 2019, 6(12): 2004-2013. DOI: 10.1039/C9QO00386J.
[14] DAI Y, LI K L, SHE J L, et al. Lipopeptide epimers and a phthalide glycerol ether with AChE inhibitory activities from the marine-derived fungus Cochliobolus lunatus SCSIO41401[J]. Marine Drugs, 2020, 18(11): 547. DOI: 10.3390/md18110547.
[15] 刘茜,张业.南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J].广西师范大学学报(自然科学版),2016,34(4): 55-59.DOI: 10.16088/j.issn.1001-6600.2016.04.009.
[16] JIANG Q J, WEI N, HUO Y S, et al. Secondary metabolites of the endophytic fungus Cladosporium sp. CYC38[J]. Chemistry of Natural Compounds, 2020, 56(6): 1166-1169. DOI: 10.1007/s10600-020-03257-y.
[17] FUJII Y, FUKUDA A, HAMASAKI T, et al. Twelve-membered lactones produced by Cladosporium tenuissimum and the plant growth retardant activity of cladospolide B[J]. Phytochemistry, 1995, 40(5): 1443-1446. DOI: 10.1016/0031-9422(95)00414-3.
[18] GESNER S, COHEN N, ILAN M, et al. Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B[J]. Journal of Natural Products, 2005, 68(9): 1350-1353. DOI: 10.1021/np0501583.
[19] WANG W X, FENG H M, SUN C X, et al. Thiocladospolides F-J, antibacterial sulfur containing 12-membered macrolides from the mangrove endophytic fungus Cladosporium oxysporum HDN13-314[J]. Phytochemistry, 2020, 178: 112462. DOI: 10.1016/j.phytochem.2020.112462.
[20] PANG X Y, LIN X P, WANG J F, et al. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007[J]. Steroids, 2018, 129: 41-46. DOI: 10.1016/j.steroids.2017.12.001.
[21] 韩秀丽,林贞健,陶洪文,等.红海榄共生真菌Penicillium sp.HK13-8细胞毒活性成分研究[J].中国海洋药物,2009,28(5):11-16.DOI: 10.13400/j.cnki.cjmd.2009.05.004.
[22] KOBAYASHI M, AOKI S, GATO K, et al. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum[J]. Chemical & Pharmaceutical Bulletin, 1994, 42(12): 2449-2451. DOI: 10.1248/cpb.42.2449.
[23] 王慧娜,尹志峰,尹鑫,等.金丝草化学成分及其体外抗HBV活性[J].中成药,2019,41(6):1308-1312.DOI: 10.3969/j.issn.1001-1528.2019.06.022.
[24] ZHAO P J, WANG H X, LI G H, et al. Secondary metabolites from endophytic Streptomyces sp. Lz531[J]. Chemistry & Biodiversity, 2007, 4(5): 899-904. DOI: 10.1002/cbdv.200790078.
[25] DING Z G, ZHAO J Y, YANG P W, et al. 1H and 13C NMR assignments of eight nitrogen containing compounds from Nocardia alba sp. nov (YIM 30243T)[J]. Magnetic Resonance in Chemistry, 2009, 47(4): 366-370. DOI: 10.1002/mrc.2393.
[26] COURSINDEL T, RESTOUIN A, DEWYNTER G, et al. Stereoselective ring contraction of 2,5-diketopiperazines: an innovative approach to the synthesis of promising bioactive 5-membered scaffolds[J]. Bioorganic Chemistry, 2010, 38(5): 210-217. DOI: 10.1016/j.bioorg.2010.05.002.
[27] HARIZANI M, KATSINI E, GEORGANTEA P, et al. New chlorinated 2,5-diketopiperazines from marine-derived bacteria isolated from sediments of the Eastern Mediterranean Sea[J]. Molecules, 2020, 25(7): 1509. DOI: 10.3390/molecules25071509.
[28] ZHANG S X, MA Y G, MA R H, et al. Combination of medium- and high-pressure liquid chromatography for isolation of L-tryptophan (Q-marker) from Medicago sativa extract[J]. Separations, 2022, 9(9): 240. DOI: 10.3390/separations 9090240.
[29] PENG X P, WANG Y, ZHU G L, et al. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides[J]. Magnetic Resonance in Chemistry, 2018, 56(1): 18-24. DOI: 10.1002/mrc.4659.
[30] HIROTA H, HIROTA A, SAKAI H, et al. Absolute stereostructure determination of cladospolide A using MTPA ester method[J]. Bulletin of the Chemical Society of Japan, 1985, 58(7): 2147-2148. DOI: 10.1246/bcsj.58.2147.
[31] GOKUL RAJ K, MANIKANDAN R, ARULVASU C, et al. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 138: 667-674. DOI: 10.1016/j.saa.2014.11.036.
[32] WATANABE S, TOGASHI S, TAKAHASHI N, et al. L-tryptophan as an antioxidant in human placenta extract[J]. Journal of Nutritional Science and Vitaminology, 2002, 48(1): 36-39. DOI: 10.3177/jnsv.48.36.
[33] 刘岩,李翔宇,李成会.色氨酸营养研究进展[J].中国饲料,2019(5):50-53.DOI: 10.15906/j.cnki.cn11-2975/s.20190512.
[34] 王斌.L-色氨酸缓解动物肠道炎症的作用机制研究[D].北京:中国农业大学,2018.
[35] 翁辉廉,陆泳.L-色氨酸的生理性安眠作用[J].中国医院药学杂志,1988,8(3):21-22.
[1] XU Ziwei, DENG Yecheng, LUO Haiyu, DENG Zhiyong, WEI Jianfen, HUANG Lingyu, GAN Pinggui. Study on the Antifungal Activity of Secondary Metabolites from Active Endophytic Fungi Isolated from Paederia scandens (Lour.) Merr. [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 31-38.
[2] XIAO Ze'en, ZOU Sihua, JIANG Jiao, LUO Haimei, HUANG Xishan, LIU Yonghong, TAN Zhen. Secondary Metabolites and Its Hypoglycemic of Endophytic Fungus Penicillium sp. GXIMD00006 Derived from the Bruguiera gymnorrhiza [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 150-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!