Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 150-160.doi: 10.16088/j.issn.1001-6600.2024062801
Previous Articles Next Articles
PENG Suqin1,2, LIU Yulin3, MAO Rong4, LIU Yuqiu4*, FAN Yixuan5, ZHOU Yushan1,2, YANG Qi1,2
| [1] LI J P, MA H B, XIE Y Z, et al. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China[J]. Scientific Reports, 2019, 9(1): 16088. DOI: 10.1038/s41598-019-52631-6. [2] GAO W, HUANG S D, HUANG Y R, et al. Effects of tree species on soil carbon and nitrogen stocks in a coastal sand dune of southern subtropical China[J]. Vegetos, 2019, 32(2): 142-150. DOI: 10.1007/s42535-019-00017-4. [3] 李伟, 王巧珍, 刘小飞, 等. 森林转换对土壤可溶性有机碳和微生物生物量碳的影响[J]. 亚热带资源与环境学报, 2015, 10(1): 43-50. DOI: 10.19687/j.cnki.1673-7105.2015.01.006. [4] JAFFRAIN J, F. GÉRARD, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal, 2010, 71(6): 1851-1858. DOI: 10.2136/sssaj2006.0202. [5] THOMAS B W, WHALEN J K, SHARIFI M, et al. Labile organic matter fractions as early-season nitrogen supply indicators in manure-amended soils[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1): 94-103. DOI: 10.1002/jpln.201400532. [6] LI P, YANG Y H, HAN W X, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems[J]. Global Ecology and Biogeography, 2014, 23(9): 979-987. DOI: 10.1111/geb.12190. [7] 赵紫薇, 阮宏华, 杨艳, 等. 干旱对杨树人工林土壤微生物生物量碳氮磷生态化学计量特征的影响[J/OL]. 南京林业大学学报(自然科学版):1-10[2024-06-28]. http://kns.cnki.net/kcms/detail/32.1161.s.20240423.1204.002.html. [8] 张洋, 倪九派, 周川, 等. 三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J]. 中国生态农业学报, 2014, 22(7): 766-773. DOI: 10.3724/SP.J.1011.2014.40377. [9] LANGE M, TÜRKE M, PAŠALIĆE, et al. Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure[J]. Forest Ecology and Management, 2014, 329: 166-176. DOI: 10.1016/j.foreco.2014.06.012. [10] AZUMA D L, ESKELSON B N I, THOMPSON J L. Effects of rural residential development on forest communities in Oregon and Washington, USA[J]. Forest Ecology and Management, 2014, 330: 183-191. DOI: 10.1016/j.foreco.2014.07.018. [11] CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Applied Soil Ecology, 2015, 92: 35-44. DOI: 10.1016/j.apsoil.2015.01.018. [12] ZHOU L, SUN Y J, SAEED S, et al. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species[J]. Global Ecology and Conservation, 2020, 22: e1009. DOI: 10.1016/j.gecco.2020.e01009. [13] CHEN X L, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169. DOI: 10.1016/j.apsoil.2016.05.016. [14] 颜耀, 张辉, 黄智军, 等. 补植阔叶树种对红壤侵蚀区马尾松林水源涵养功能的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(1): 67-73. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2020.01.012. [15] 曹小玉, 李际平, 委霞. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 2020, 56(1): 20-27. DOI: 10.11707/j.1001-7488.20200103. [16] 徐芷君, 刘苑秋, 方向民, 等. 亚热带2种针叶林土壤碳氮磷储量及化学计量比对混交的响应[J]. 水土保持学报, 2019, 33(1): 165-170. DOI: 10.13870/j.cnki.stbcxb.2019.01.027. [17] COOK R L, BINKLEY D, MENDES J C T, et al. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil[J]. Forest Ecology and Management, 2014, 324: 37-45. DOI: 10.1016/j.foreco.2014.03.019. [18] 梁艳, 明安刚, 何友均, 等. 南亚热带马尾松—红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 2021, 32(3): 878-886. DOI: 10.13287/j.1001-9332.202103.37. [19] 詹学齐. 马尾松林冠下套种阔叶树20年间土壤肥力变化[J]. 北京林业大学学报, 2018, 40(6): 55-61. DOI: 10.13332/j.1000-1522.20170463. [20] SHEN Y F, CHENG R M, XIAO W F, et al. Effects of understory removal and thinning on soil aggregation, and organic carbon distribution in Pinus massoniana plantations in the three Gorges Reservoir area[J]. Ecological Indicators, 2021, 123: 107323. DOI: 10.1016/j.ecolind.2020.107323. [21] FANG X M, ZHANG X L, ZONG Y Y, et al. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests[J]. PLos One, 2017, 12(10): e0186905. DOI: 10.1371/journal.pone.0186905. [22] 丁国昌, 万晓华, 杨起帆, 等. 亚热带树种转换对林地土壤微生物群落结构和功能的影响[J]. 应用生态学报, 2017, 28(11): 3751-3758. DOI: 10.13287/j.1001-9332.201711.039. [23] BARGALI K, MANRAL V, PADALIA K, et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India[J]. Catena, 2018, 171: 125-135. DOI: 10.1016/j.catena.2018.07.001. [24] 董敏慧, 张良成, 文丽, 等. 松树—樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J]. 中南林业科技大学学报, 2017, 37(11): 146-153. DOI: 10.14067/j.cnki.1673-923x.2017.11.024. [25] 陆晓明. 马尾松人工林近自然化改造对物种多样性及生物量的影响[D]. 南宁: 广西大学, 2014. [26] 彭素琴, 刘郁林, 刘苑秋, 等. 针叶林补阔对土壤有机碳、氮含量的影响[J]. 赣南师范大学学报, 2022, 43(3): 97-102. DOI: 10.13698/j.cnki.cn36-1346/c.2022.03.020. [27] 吴金水,林启美,黄巧云,等. 土壤微生物生物量测定方法及应用[M]. 北京: 气象出版社, 2006. [28] 耿浦耀, 王晓丽, 罗少辉, 等. 返青期休牧对三江源区土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 2024, 44(14):6219-6231. DOI: 10.20103/j.stxb.202311032395. [29] 石丽娜, 林开敏, 陈梦瑶,等. 近自然杉木林经营对土壤微生物量碳氮特征的影响[J]. 土壤通报, 2018, 49(1): 112-118. DOI: 10.19336/j.cnki.trtb.2018.01.16. [30] 李雪, 万晓华, 周富伟, 等. 南亚热带6种人工林土壤微生物生物量和群落结构特征[J]. 亚热带资源与环境学报, 2020, 15(1): 33-40. DOI: 10.3969/j.issn.1673-7105.2020.01.006. [31] 王玉凤, 席守鸿, 谭玲, 等. 南亚热带马尾松—红锥混交林与其纯林对土壤微生物生物量碳和氮的影响比较[J]. 西部林业科学, 2022, 51(2): 93-99, 105. DOI: 10.16473/j.cnki.xblykx1972.2022.02.014. [32] QUIDEAU S A, CHADWICK O A, TRUMBORE S E. Vegetation control on soil organic matter dynamics[J]. Organic Geochemistry, 2001, 32(2): 247-252. DOI: 10.1016/S0146-6380(00)00171-6. [33] 樊雪波, 吴福忠, 艾灵, 等. 森林土壤微生物生物量碳对凋落物输入的响应[J]. 亚热带资源与环境学报, 2024, 19(1): 16-23. DOI: 10.19687/j.cnki.1673-7105.2024.01.003. [34] 王春阳, 周建斌, 董燕婕, 等. 黄土区六种植物凋落物与不同形态氮素对土壤微生物量碳氮含量的影响[J]. 生态学报, 2010, 30(24): 7092-7100. [35] 吕成群, 黄宝灵, 张明慧, 等. 桉树×相思树混交与纯林土壤微生物区系比较[C]//2008: 微生物实用技术生态环境应用学术研讨会论文集. 北京:中国林业与环境促进会,2008: 95-101. [36] 黄娟, 邓羽松, 韦慧, 等. 喀斯特峰丛洼地不同植被类型土壤微生物量碳氮磷和养分特征[J]. 土壤通报, 2022, 53(3): 605-612. DOI: 10.19336/j.cnki.trtb.2021081302. [37] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 2019, 30(6): 10. DOI: 10.13287/j.1001-9332.201906.028. [38] KRAMER C, TRUMBORE S, FRÖBERG M, et al. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil[J]. Soil Biology and Biochemistry, 2010, 42(7): 1028-1037. DOI: 10.1016/j.soilbio.2010.02.021. [39] 林建美. 塞罕坝不同林分类型土壤活性有机碳特征研究[D]. 北京: 北京林业大学, 2020. [40] 王娟娟. 上海市五种绿化群落土壤微生物生物量的特征研究[D]. 上海: 华东师范大学, 2016. [41] YANG X, MENG J, LAN Y, et al. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China[J]. Agriculture, Ecosystems and Environment, 2017, 240: 24-31. DOI: 10.1016/j.agee.2017.02.001. [42] 刘平, 邱月, 王玉涛, 等. 渤海泥质海岸典型防护林土壤微生物量季节动态变化[J]. 生态学报, 2019, 39(1): 363-370. DOI: 10.5846/stxb201711021961. [43] 付志高, 肖以华, 许涵, 等. 南亚热带常绿阔叶林土壤微生物生物量碳氮年际动态特征及其影响因子[J]. 生态学报, 2024, 44(3): 1092-1103. DOI: 10.20103/j.stxb.202212313717. [44] WARREN M, 邹晓明. 温带阔叶林中氮的保留机制: “春坝”假设及研究实例[J]. 植物生态学报, 2003, 27(1): 11-15. DOI: 10.17521/cjpe.2003.0002. [45] REN C J, CHEN J, LU X J, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 2018, 116: 4-10. DOI: 10.1016/j.soilbio.2017.09.028. [46] XU Z Z, HOU Y H, ZHANG L H, et al. Ecosystem responses to warming and watering in typical and desert steppes[J]. Scientific Reports, 2016, 6: 34801. DOI: 10.1038/srep34801. [47] ZHANG L H, XIE Z K, ZHAO R F, et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology, 2018, 127: 87-95. DOI: 10.1016/j.apsoil.2018.02.005. [48] KAISER C, FUCHSLUEGER L, KORANDA M, et al. Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation[J]. Ecology, 2011, 92(5): 1036-1051. DOI: 10.1890/10-1011.1. [49] 许华, 何明珠, 唐亮, 等. 荒漠土壤微生物量碳、氮变化对降水的响应[J]. 生态学报, 2020, 40(4): 1295-1304. DOI: 10.5846/stxb201901020014. [50] LUNG MUANA, SINGU S B, VANTHAWMLIANA, et al. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India[J]. Catena, 2017, 156: 10-17. DOI: 10.1016/j.catena.2017.03.017. [51] WEN L, LEI P F, XIANG W H, et al. Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age[J]. Forest Ecology and Management, 2014, 328: 150-158. DOI: 10.1016/j.foreco.2014.05.037. [52] 袁春阳, 李济宏, 韩鑫, 等. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. DOI: 10.17521/cjpe.2021.0324. [53] TENG Y M, ZHAN J Y, LIU W, et al. Larch or Mongolian pine? Effects of tree species on soil properties and microbial biomass with the consideration of afforestation time[J]. Ecological Engineering, 2020, 158: 106074. DOI: 510.1016/j.ecoleng.2020.106074. [54] 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. DOI: 10.17521/cjpe.2017.0011. [55] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-163. DOI: 10.1111/j.1365-2389.1996.tb01386.x. [56] PENG Y, SCHMIDT I K, ZHENG H F, et al. Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale[J]. Forest Ecology and Management, 2020, 478: 118510. DOI: 10.1016/j.foreco.2020.118510. [57] LI Z L, ZENG Z Q, TIAN D S, et al. The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization[J]. Environmental Research Letters, 2020, 15(3): 034005. DOI: 10.1088/1748-9326/ab6a26. [58] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34(3): 387-401. DOI: 10.1016/S0038-0717(01)00199-7. [59] CHEN C R, XU Z H, ZHANG S L, et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant and Soil, 2005, 277(1): 285-297. DOI: 10.1007/s11104-005-7530-4. [60] LI Z L, TIAN D S, WANG B X, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078-1088. DOI: 10.1111/gcb.14557. [61] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响[J]. 应用生态学报, 2016, 27(4): 1031-1038. DOI: 10.13287/j.1001-9332.201604.029. |
| [1] | ZHANG Dongqing, YAN Biao, CHANG Dongdong, LUAN Ke, REN Yingfeng, FAN Mingliang, XIAO Zhishu, ZHOU Qihai. Seasonality of Daily Activity Rhythms of Taihangshan Macaque (Macaca mulatta tcheliensis) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 116-122. |
| [2] | ZHANG Hui, LIU Hongying , ZHANG Yuning, MA Jiangming, MO Yanhua, LING Tianwang, YANG Zhangqi, LI Mingjin. Life Form Spectrum and Leaf Physiognomy of Understory Woody Species in the Near-natural Restoration Process of Pinus massoniana Plantations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 119-127. |
| [3] | WANG Yongqi, QIN Jiashuang, MA Jiangming, JIAN Rui, PAN Xiaomei, YANG Zhangqi, LING Tianwang, LI Mingjin. Understory Woody Species Diversity of Pinus massoniana Plantations in South Subtropical Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 131-139. |
| [4] | PAN Xiaomei, LI Mingjin, YANG Zhangqi, MA Jiangming, LING Tianwang, YAN Peidong. Study on Undergrowth Flora of Pinus massoniana Plantations with Four Different Forest Ages in Southern Subtropical Area of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 136-143. |
|