Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 110-120.doi: 10.16088/j.issn.1001-6600.2024052801

Previous Articles     Next Articles

Spatial Simulation of Tea Suitable Area in Yunnan Province under Climate Change Scenarios

YANG Lisha, LIN Chuan, ZHANG Wenqi, CUI Huanfeng, WANG Yanxia*   

  1. Faculty of Soil and Water Conservation, Southwest Forestry University, Kunming Yunnan 650224, China
  • Received:2024-05-28 Revised:2024-06-24 Online:2025-01-05 Published:2025-02-07

Abstract: Tea (Camellia sinensis), is extremely sensitive to climate change, so the impact of climate change on the distribution of tea in Yunnan Province is evaluated to formulate a development plan for tea-growing areas and protect biodiversity. Based on 100 tea distribution points (50 presence distribution points and 50 pseudo-absence distribution points, respectively) and 14 environmental variables, the suitable habitat areas of tea in Yunnan Province under different scenarios (SSP1-2.6, SSP3-7.0 and SSP5-8.5) at present and in future 2041-2060 and 2081-2100 were simulated and predicted based on RF model and ArcGIS spatial analysis technology. The results showed that: 1) The accuracy of the RF model is 0.92, which was a very good level. Factors such as annual average rainfall, slope, rainfall in the driest season, average rainfall in the coldest season, annual temperature fluctuation range, slope aspect, curvature and other factors had significant effects on the distribution of tea. 2) At present, the most suitable and suitable areas for tea trees gradually decrease from south to north, showing a C-shaped distribution, with 8.10×104 km2 being highly suitable, accounting for approximately 21.07% of Yunnan Province, and approximately 9.18×104 km2 being suitable, accounting for approximately 23.88% of Yunnan Province. 3) With future climate change, the suitable areas of tea plants will expand andmove northward, showing a W-shaped distribution change; the suitable areas of tea plante in Baoshan, Lincang, northern Pu’er, Honghe, and other areas will considerably expand. In the future, the newly-developed area of suitable areas of tea will encroach on the forest area, which may lead to the conflict between the reclamation of new tea plantations and the conservation of forest area and biodiversity.

Key words: climatic change, teas, suitable areas, random forest, biodiversity

CLC Number:  S571.1;S162.54
[1] KOGO B K, KUMAR L, KOECH R. Climate change and variability in Kenya: a review of impacts on agriculture and food security[J]. Environment, Development and Sustainability, 2021, 23(1): 23-43. DOI: 10.1007/s10668-020-00589-1.
[2] HASEGAWA T, SAKURAI G, FUJIMORI S, et al. Extreme climate events increase risk of global food insecurity and adaptation needs[J]. Nature Food, 2021, 2(8): 587-595. DOI: 10.1038/s43016-021-00335-4.
[3] ANDERSON R, BAYER P E, EDWARDS D. Climate change and the need for agricultural adaptation[J]. Current Opinion in Plant Biology, 2020, 56: 197-202. DOI: 10.1016/j.pbi.2019.12.006.
[4] 何雨芩,张茂松,黄成兵,等. 基于GIS的云南省茶树种植气候适宜性区划[J]. 安徽农业科学, 2015, 43(25): 218-221. DOI: 10.13989/j.cnki.0517-6611.2015.25.221.
[5] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 116-126.
[6] OCHIENG J, KIRIMI L, MATHENGE M. Effects of climate variability and change on agricultural production:the case of small scale farmers in Kenya[J]. NJAS: Wageningen Journal of Life Sciences, 2016, 77: 71-78. DOI: 10.1016/j.njas.2016.03.005.
[7] JAYASINGHE S L, KUMAR L. Climate change may imperil tea production in the four major tea producers according to climate prediction models[J]. Agronomy, 2020, 10(10): 1536. DOI: 10.3390/agronomy10101536.
[8] HALLEGATTE S, CORFEE-MORLOT J. Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction[J]. Climatic Change, 2011, 104(1): 1-12. DOI: 10.1007/s10584-010-9981-8.
[9] 张晓玲, 李亦超, 王芸芸, 等. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.DOI: 10.17520/biods.2019085.
[10] 刘博洋. 中国裂谷热媒介分布、风险评估及传播模型研究[D]. 哈尔滨: 东北农业大学, 2020. DOI: 10.27010/d.cnki.gdbnu.2020.000001.
[11] THUILLER W, LAFOURCADE B, ENGLER R,et al. BIOMOD-a platform for ensemble forecasting of species distributions[J]. Ecography, 2009, 32(3): 369-373. DOI: 10.1111/j.1600-0587.2008.05742.x.
[12] MI C R, HUETTMANN F, GUO Y M, et al. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence[J]. PeerJ, 2017, 5: e2849. DOI: 10.7717/peerj.2849.
[13] RATHER T A, KUMAR S, KHAN J A. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm[J]. Scientific Reports, 2020, 10(1): 11473. DOI: 10.1038/s41598-020-68167-z.
[14] PIN KEONG E, EHSAN RANA M, ABDUL HAMEED V. Crop suitability prediction model for Malaysian crop diversification[C]//2022 International Conference on Decision Aid Sciences and Applications (DASA). Piscataway, NJ: IEEE, 2022: 1004-1012. DOI: 10.1109/DASA54658.2022.9765283.
[15] GBIF.org. GBIF occurrence download[DB/OL].(2023-06-29)[2024-05-28]. https://doi.org/10.15468/dl.56zyh8.
[16] 张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用: 以云南松分布模拟为例[J]. 生态学报, 2014, 34(3): 650-659. DOI: 10.5846/stxb201306031292.
[17] 杨洋, 何春阳, 李晓兵. 基于GIS的云南栽培型普洱茶树大规模种植适宜性评价[J]. 北京林业大学学报, 2010, 32(3): 33-40. DOI: 10.13332/j.1000-1522.2010.03.010.
[18] WEI G Y, ZHOU R L. Comparison of machine learning and deep learning models for evaluating suitable areas for premium teas in Yunnan, China[J]. PLoS One, 2023, 18(2): e0282105. DOI: 10.1371/journal.pone.0282105.
[19] 卢玲,刘超. 基于世界土壤数据库(HWSD)的中国土壤数据集(v1.1)[DB/OL]. 兰州: 国家冰川冻土沙漠科学数据中心, 2019[2024-05-28]. https://www.doi.org/10.12072/ncdc.westdc.db3647.2023.
[20] 张华纬, 李志鹏. 基于随机森林模型和GIS的假臭草全国适生区预测[J]. 亚热带植物科学, 2023, 52(1): 50-59. DOI: 10.3969/j.issn.1009-7791.2023.01.008.
[21] LIU D, LEI X D, GAO W Q,et al. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling[J]. Journal of Forestry Research, 2022, 33(6): 1739-1750. DOI: 10.1007/s11676-022-01459-4.
[22] 唐俊贤, 王培娟, 俄有浩, 等. 中国大陆茶树种植气候适宜性区划[J].应用气象学报, 2021, 32(4): 397-407. DOI: 10.11898/1001-7313.20210402.
[23] 周鹏飞, 刘琳, 杨晋帆, 等. 基于机器学习的云南省蝙蝠空间分布及其危害分析[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 139-149. DOI: 10.16088/j.issn.1001-6600.2022121102.
[24] LUAN J, ZHANG C L, XU B D, et al. The predictive performances of random forest models with limited sample size and different species traits[J]. Fisheries Research, 2020, 227: 105534. DOI: 10.1016/j.fishres.2020.105534.
[25] 宗迪迪, 董灵波, 刘兆刚. 基于最大熵和随机森林模型的3种珍贵硬阔叶树种潜在分布预测[J]. 广西林业科学, 2024, 53(1): 1-9. DOI: 10.19692/j.issn.1006-1126.20240101.
[26] 胡炳. 云茶大典[M]. 昆明: 云南民族出版社, 2008: 31-40.
[27] ZHAO Y C, XU Y L, ZHANG L, et al. Adapting tea production to climate change under rapid economic development in China from 1987 to 2017[J]. Agronomy, 2022, 12(12): 3192. DOI: 10.3390/agronomy12123192.
[28] ZHAO Y C, ZHAO M Y, ZHANG L, et al. Predicting possible distribution of tea (Camellia sinensis L.) under climate change scenarios using MaxEnt model in China[J]. Agriculture, 2021, 11(11): 1122. DOI: 10.3390/agriculture11111122.
[29] 金志凤, 封秀燕. 基于GIS的浙江省茶树栽培气候区划[J]. 茶叶, 2006, 32(1):7-10. DOI: 10.3969/j.issn.0577-8921.2006.01.003.
[30] SHIOGAMA H, FUJIMORI S, HASEGAWA T, et al. Important distinctiveness of SSP3-7.0 for use in impact assessments[J]. Nature Climate Change, 2023, 13(12): 1276-1278. DOI: 10.1038/s41558-023-01883-2.
[31] TONNANG H E Z, SOKAME B M, ABDEL-RAHMAN E M, et al. Measuring and modelling crop yield losses due to invasive insect pests under climate change[J]. Current Opinion in Insect Science, 2022, 50: 100873. DOI: 10.1016/j.cois.2022.100873.
[32] ALI M, ISLAM M, SAHA N,et al. Effects of microclimatic parameters on tea leaf production in different tea estates in Bangladesh[J]. World Journal of Agricultural Sciences, 2014, 10(3): 134-140. DOI: 10.5829/idosi.wjas.2014.10.3.1739.
[33] DAI Y C. The overlap of suitable tea plant habitat with Asian elephant (Elephus maximus) distribution in southwestern China and its potential impact on species conservation and local economy[J]. Environmental Science and Pollution Research, 2022, 29(4): 5960-5970. DOI: 10.1007/s11356-021-16014-7.
[34] LI Z, FANG G H, CHEN Y N, et al. Agricultural water demands in Central Asia under 1.5 ℃ and 2.0 ℃ global warming[J]. Agricultural Water Management, 2020, 231: 106020. DOI: 10.1016/j.agwat.2020.106020.
[1] ZHOU Pengfei, LIU Lin, YANG Jinfan, LIU Tingting, WEI Guiyu, ZHOU Ruliang. Analysis on Spatial Distribution and Harm of Bats in Yunnan Province Based on Machine Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 139-149.
[2] LI Ting, XU Zhenghui, LI Biao, ZHAI Jiang, HAN Xiu, ZHANG Xinmin,. Distribution Characteristics of Ant Species in Eastern Daliangshan of Sichuan, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 174-191.
[3] ZHUO Wenhua, LI Lixiang, PAN Yuanfang, JIANG Yong, LIN Hongling, HE Yan, FANG Yaocheng, LIANG Shichu, SU Quan. Effects of Different Slope Positions on Shrub Species Diversity and Soil Factors in Guilin Hilly Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 192-199.
[4] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[5] WU Haifeng, ZHANG Jin, LU Zujun, SHANG Changhua. Research Progress of Bacteria and Proteases for Sauce-flavor Baijiu Daqu [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 398-405.
[6] CHEN Chao, XU Zhenghui, ZHANG Xinmin, GUO Ningyan, LIU Xia, QIAN Yishun, QI Biao. Ant Species Diversity of Middle Daliangshan in Sichuan, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 218-230.
[7] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27-33.
[8] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34-41.
[9] YU Li-jiang, LU Zhou, SHU Xiao-liang, JIANG Ai-wu, YANG Gang,
YU Gui-dong, LI Zhao-tian, ZHOU Fang. Bird Diversity in Limestone Area of Southwestern Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 103-108.
[10] ZHU Yu, CAI De-suo, ZHOU Jie, HAN Yao-quan. Ecological Types and Biodiversity of Fish in Lijiang River,Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 146-151.
[11] ZHANG Yong-xiang, CAI De-suo, YI Ran. Ecological Fragility and Impact Factor of Water-level-fluctuation of the Qingshitan Reservoir,Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .