Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 39-48.doi: 10.16088/j.issn.1001-6600.2017.04.006

Previous Articles     Next Articles

The Landmark Decision Based on a New Vague Soft Set FuzzyEntropy-Topsis Theory

MENG Yuanyuan1,2,WEI Bo1,2*,ZOU Yao 1,2   

  1. 1.Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin Guangxi 541004,China;
    2.College of Geomatics and Geoinformation, Guilin University of Technology, Guilin Guangxi 541004,China
  • Online:2017-07-25 Published:2018-07-25

Abstract: Based on the analysis of the defect of existing construction method on Vague soft set entropy,this article proposes a new method of Vague soft sets fuzzy entropy,which contains both unpredictability and uncertainty of Vague sets itself.The two factors that influence the fuzzy entropy are comprehensively measured by adding the uncertainty and the unknown degree of the distance between the true and false membership of the Vague set.The value of the adjustment factor is set to be a constant,which is multiplied by 1/2 to match the constraints of the Vague soft set fuzzy entropy.Compared with the existing fuzzy entropy,it is shown that its rationality through the data analysis is good. By establishing a landmark model by the new fuzzy entropy-Topsis theory,the fuzziness of the information is eliminated,and the effective information of the landmark is quantified and weighted.At last,the ranking of the landmarks is represented by the relative distance between the landmarks and the reference points.The proposed fuzzy entropy of Vague soft sets are applied to landmark sort,showing it can make the optimal decision effectively.

Key words: Vague soft sets, fuzzy entropy, Topsis method, landmark sort, optimal decision

CLC Number: 

  • TP18
[1] GAU W L,BUEHRER D J. Vague sets[J].IEEE Trans on Systems,Man,and Cybernetics,1993,23(2):610-614.DOI: 10.1109/21.229476.
[2] FENG Feng, LI Changxing, DAVVAZ B, et al. Soft sets combined with fuzzy sets and rough sets: a tentative approach[J]. Soft Computing,2010,14(9):899-911. DOI:10.1007/s00500-009-0465-6.
[3] XU Wei,MA Jian,WANG Shouyang,et al. Vague soft sets and their properties[J].Computers and Mathematics with Applications,2010,59(2):787-794. DOI:10.1016/j.camwa.2009.10.015.
[4] 王昌. Vague软集的模糊熵和它的一些性质[J].小型微型计算机系统,2012,33(7):1564-1567. DOI:10.3969/j.issn.1000-1220.2012.07.032.
[5] 李凡,卢安,蔡立晶.关于 Vague 集的模糊熵及其构造[J].计算机应用与软件,2002,19(2):10-12. DOI:10.3969/j.issn.1000-386X.2002.02.003.
[6] 王万军. Vague集不确定信息处理的SPA方法及应用研究[D].兰州:兰州大学,2012.
[7] YAO Xiaobai, THILL J C. Spatial queries with qualitative locations in spatial information systems[J]. Computers, Environment and Urban Systems, 2006, 30(4): 485-502. DOI:10.1016/j.compenvurbsys.2004.08.001.
[8] NOTHEGGER C, WINTER S, RAUBAL M. Selection of salient features for route directions[J]. Spatial Cognition and Computation, 2004, 4(2): 113-136. DOI:10.1207/s15427633scc0402_1.
[9] 张磊,辛小龙,刘庆.Vague 集的代数性质与 Vague 熵[J].计算机工程与应用,2010,46(4):32-35. DOI:10.3778/j.issn.1002-8331.2010.04.010.
[10] 吴慧,郭效枝.Vague 熵的约束准则及计算公式[J].计算机应用与软件,2011,28(7):267-269. DOI:10.3969/j.issn.1000-386X.2011.07.081.
[11] YE Jun. Two effective measures of intuitionistic fuzzy entropy[J]. Computing, 2010, 87(1/2): 55-62.
[12] ZENG Wenyi, LI Hongxing. Relationship between similarity measure and entropy of interval valued fuzzy sets[J]. Fuzzy Sets and Systems, 2006, 157(11): 1477-1484. DOI:10.1016/j.fss.2005.11.020.
[13] SZMIDT E,KACPRZYK J. New Measures of Entropy for Intuitionistic Fuzzy Sets[J]. Notes on Intuitionistic Fuzzy Sets,2005, 11(2):12-20.
[14] ZHANG Qiansheng, JIANG Shengyi. A note on information entropy measures for vague sets and its applications[J].Information Sciences, 2008, 178(21): 4184-4191. DOI:10.1016/j.ins.2008.07.003.
[15] VLACHOS I K, SERGIADIS G D. Subsethood, entropy, and cardinality for interval-valued fuzzy sets: an algebraic derivation[J].Fuzzy Sets and Systems, 2007, 158(12):1384-1396. DOI:10.1016/j.fss.2006.12.018.
[16] VERMA R, SHARMA B D. Exponential entropy on intuitionistic fuzzy sets[J]. Kybernetika, 2013, 49(1): 114-127.
[17] LI Jinquan, DENG Guannan, LI Hongxing, et al. The relationship between similarity measure and entropy of intuitionistic fuzzy sets[J]. Information Sciences, 2012, 188: 314-321. DOI:10.1016/j.ins.2011.11.021.
[18] ZHANG Qiansheng, XING Hongyan, WU Lihua. Entropy, similarity measure, inclusion measure of intuitionistic fuzzy sets and their relationships[J]. Int J of Computational Intelligence Systems, 2012, 5(3): 519-529. DOI:10.1080/18756891.2012.696917.
[19] 黄国顺,刘云生.基于非模糊集的 Vague 模糊熵[J].计算机应用与软件,2005,22(6):16-17. DOI:10.3969/j.issn.1000-386X.2005.06.007.
[20] 魏翠萍,髙志海,郭婷婷.一个基于三角函数的直觉模糊熵公式[J].控制与决策,2012,27(4):571-574.DOI:10.13195/j.cd.2012.04.93.weicp.001.
[21] 刘满凤,任海平.基于一类新的直觉模糊熵的多属性决策方法研究[J]. 系统工程理论与实践,2015,35(11): 2909-2916.
[22] 李天志,梁家荣,范平,等.Vague集的模糊熵[J].计算机应用研究,2007,24(10):93-94, 98. DOI:10.3969/j.issn.1001-3695.2007.10.027.
[23] 魏翠萍,梁霞,张玉忠.直觉模糊集的熵公式比较与改进[J].系统科学与数学,2012,32(11):1437-1448.
[24] 王坚强,王佩.基于直觉模糊熵的直觉语言多准则决策方法[J].控制与决策,2012, 27(11):1694-1698.
[25] 彭祖明. Vague集模糊熵的一个新模型[J].西南师范大学学报(自然科学版), 2012, 37(10): 13-17. DOI:10.13718/j.cnki.xsxb.2012.10.001.
[26] 吴涛,白礼虎,刘二宝,等.直觉模糊集新的熵公式及应用[J].计算机工程与应用,2013,49(23):48-51. DOI:10.3778/j.issn.1002-8331.1204-0692.
[27] 李佳骏,宋旭东,李艳红.Vague 软集的新模糊熵及其应用[J].计算机工程与应用,2015, 51(13):221-224. DOI:10.3778/j.issn.1002-8331.1311-0014.
[28] 彭芳艳,梁家荣,伍华健.Vague 集模糊熵的新构造方法[J].计算机工程与应用,2009,45(29):52-54. DOI:10.3778/j.issn.1002-8331.2009.29.015.
[29] 高明美,孙涛,朱建军.一种改进的直觉模糊熵公理化定义和构造公式[J].控制与决策,2014,29(3):470-474. DOI:10.13195/j.kzyjc.2012.1549.
[30] 赵飞,王青山,郝万亮.直觉模糊熵约束条件的改进及新模糊熵构造[J].计算机应用,2015,35(12):3461-3464. DOI:10.11772/j.issn.1001-9081.2015.12.3461.
[31] 王新霞,陈孝国. 直觉模糊熵的改进研究[J].齐齐哈尔大学学报(自然科学版),2015,31(4):10-13.DOI:10.3969/j.issn.1007-984X.2015.04.003.
[32] 范平.Vague 集模糊熵的约束条件及其度量方法分析[J]. 计算机应用研究,2010,27(12):4502-4504. DOI:10.3969/j.issn.1001-3695.2010.12.030.
[33] 王一任,任力锋,陈丽文,等.一种新的改良 TOPSIS 法及其医学应用[J]. 中南大学学报(医学版),2013,38(2):196-201. DOI:10.3969/j.issn.1672-7347.2013.02.015.
[34] 王珏, 刘三阳, 张杰. 基于vague集的模糊多目标决策方法[J]. 系统工程理论与实践, 2005, 25(2): 119-122. DOI:10.3321/j.issn.1000-6788.2005.02.018.
[35] BIGAND A, COLOT O. Fuzzy filter based on interval-valued fuzzy sets for image filtering[J]. Fuzzy Sets and Systems, 2010, 161(1): 96-117. DOI:10.1016/j.fss.2009.03.010.
[36] HERRA F,HERRERA-VIEDMA E.Linguistic decision analysis:steps for solving decision problems under linguistic information[J].Fuzzy Sets and Systems,2000,115(1):67-82. DOI:10.1016/S0165-0114(99)00024-x.
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1-10.
[2] HOU Xiao-dong, CAI Bin-bin, JIN Wei-dong, DUAN Wang-wang. A New Weighted Evidence Fusion Algorithm Based on Evidence Distanceand Fuzzy Entropy Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!