|
广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (2): 21-25.
梁登峰1, 于欣言2, 秦乐洋2
LIANG Deng-feng1, YU Xin-yan2, QIN Le-yang2
摘要: 假设群G可解,且特征标维数图Γ(G)的顶点集ρ(G)=π1∪π2∪{p},其中|π1|,|π2|≥1,π1∩π2= ,且π1与π2中顶点不相邻。本文证明了G的Fitting高2≤n(G)≤4,且若n(G)≠4,则存在长最多为6的正规子群列G=G0 G1 … Gs使商群Gi/Gi+1或者是交换群或者是p-群。
中图分类号:
[1] MORETó A.An answer to a question of Isaacs on character degree graphs[J].Adv Math,2006,201(1):90-101. [2] MORETó A,SANUS L.Character degree graphs,normal subgroups and blocks[J].J Group Theory,2005,8(4):461-465. [3] ISAACS I M.Character degree graph and normal subgroups[J].Trans AmerSoc,2004,356(3):1155-1183. [4] LIANG Deng-feng,SHI Wu-jie.A graph associated with |cd(G)|-1 degrees of a solvable group[J].J Math Research and Exposition,2011,31(1):180-182. [5] 梁登峰,李士恒,施武杰.李型单群的一种特征标次数图[J].西南师范大学学报:自然科学版,2011,36(1):26-30. [6] 梁登峰,李士恒,施武杰.交错单群的一种特征标次数图[J].西南师范大学学报:自然科学版,2010,35(1):1-5. [7] MANZ O,WOLF T R.Representations of solvable groups[M].Cambridge:Cambridge University Press,1993:2-254. [8] LEWIS M L.Bounding Fitting heights of character degree graphs[J].J Algebra,2001,242(2):810-818. [9] ISAACS I M.Character theory of finite groups[M].Waltham,MA:AcademicPress,1976:78-216. [10] LEWIS M L.Solvable groups whose degree graphs have two connected components[J].J Group Theory,2001,4(3):255-275. [11] 徐明曜.有限群导引:上册[M].2版.北京:科学出版社,2001:112. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |