|
摘要: 本文主要根据A.V.Arhangel'skii等人提出的相对拓扑性质的理论,给出次亚紧性质的相对定义,研究了相对次亚紧的一些性质及相对次亚紧与较强的相对覆盖性质之间的关系。
中图分类号:
[1] ARHANGEL'SKII A V.From classic topological invariant to relative topological properties[J].Scientiae Mathematicae Japonicae,2002,55(1):153-201. [2] ZHANG Guo-fang,SHI Wei-xue.Characterizations of relative paracompactness by relative normality of product spaces[J].Houston Journal of Mathematics,2007,33(3):771-779. [3] ZHANG Guo-fang,SHI Wei-xue.Answers to two questions on relativemetrizability[J].Questions and Answers in General Topology,2008,26(1):41-43. [4] ZHANG Guo-fang.Some properties of relatively strong pseudocompactness[J].Czechoslovak Mathematical Journal,2008,58(4):1145-1152. [5] JUNNILA H J K.On submetacompactness[J].Topology Proceedings,1978,3(2):375-405. [6] BURKE D J.Covering properties[M]//KUNEN K,VAUGHAN J E.Handbookof Set-theoretic Topology.Amsterdam:North-Holland,1984:347-422. [7] QU Zhi-bin,YASUI Y.Relatively subparacompact spaces[J].Scientiae Mathematicae Japonicae,2001,54(2):281-287. [8] KOCINAC L D.Some relative topological properties[J].Matematicki Vesnik,1992,44(1/2):33-44. [9] ARHANGEL'SKII A V,GORDIENKO I J.Relative symmetrizability and metrizability[J].Comment Math Univ Carolinae,1996,37(4):757-774. [10] GRABNER E M,GRABNOR G C,MIYAZAKI K.On properties of relative metacompactness and paracompactness type[J].Topology Proceedings,2000,25(Summer):145-177. [11] GRABNER E M,GRABNOR G C,MIYAZAKI K,et al.Relative collectionwise normality[J].Appl Gen Topol,2004,5(2):199-212. [12] KAWAGUCHI S,SOKEI R.Some relative properties on normality and paracompactness,and their absolute embeddings[J].Comment Math Univ Carolinae,2005,46(3):475-495. |
[1] | 李传华, 冯春华. 一类二阶常p-Laplace系统周期解的存在性[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 28-32. |
[2] | 孟鑫, 范钦杰, 王宏仁. 集值离散动力系统的拓扑遍历性与链遍历性[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 20-23. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |