广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (4): 84-87.

• • 上一篇    下一篇

相对次亚紧的一些性质

张国芳, 范钦杰   

  1. 吉林师范大学数学学院,吉林四平136000
  • 收稿日期:2011-05-18 发布日期:2018-11-16
  • 通讯作者: 范钦杰(1956—),女,吉林梅河口人,吉林师范大学教授,博士。E-mail:fanqinjie@sina.com
  • 基金资助:
    国家自然科学基金资助项目(10971084);吉林省教育厅“十一五”科研项目([2009]第199号);吉林省四平市科技厅项目(2010012)

Some Properties of Relative Submetacompactness

ZHANG Guo-fang, FAN Qin-jie   

  1. College of Mathematics,Jilin Normal University,Siping Jilin 136000,China
  • Received:2011-05-18 Published:2018-11-16

摘要: 本文主要根据A.V.Arhangel'skii等人提出的相对拓扑性质的理论,给出次亚紧性质的相对定义,研究了相对次亚紧的一些性质及相对次亚紧与较强的相对覆盖性质之间的关系。

关键词: 相对次亚紧, 相对次仿紧, 相对族状正规

Abstract: According to the relative topological properties provided by A.V.Ahangel'skii and H.M.M.Genedi in 1989,some definitions ofrelative submetacompactness are introduced,and some properties of relative submetacompactness and their relationships with stronger covering properties are also investigated.

Key words: relative submetacompactness, relative subparacompactness, relative collectionwise normality

中图分类号: 

  • O189.1
[1] ARHANGEL'SKII A V.From classic topological invariant to relative topological properties[J].Scientiae Mathematicae Japonicae,2002,55(1):153-201.
[2] ZHANG Guo-fang,SHI Wei-xue.Characterizations of relative paracompactness by relative normality of product spaces[J].Houston Journal of Mathematics,2007,33(3):771-779.
[3] ZHANG Guo-fang,SHI Wei-xue.Answers to two questions on relativemetrizability[J].Questions and Answers in General Topology,2008,26(1):41-43.
[4] ZHANG Guo-fang.Some properties of relatively strong pseudocompactness[J].Czechoslovak Mathematical Journal,2008,58(4):1145-1152.
[5] JUNNILA H J K.On submetacompactness[J].Topology Proceedings,1978,3(2):375-405.
[6] BURKE D J.Covering properties[M]//KUNEN K,VAUGHAN J E.Handbookof Set-theoretic Topology.Amsterdam:North-Holland,1984:347-422.
[7] QU Zhi-bin,YASUI Y.Relatively subparacompact spaces[J].Scientiae Mathematicae Japonicae,2001,54(2):281-287.
[8] KOCINAC L D.Some relative topological properties[J].Matematicki Vesnik,1992,44(1/2):33-44.
[9] ARHANGEL'SKII A V,GORDIENKO I J.Relative symmetrizability and metrizability[J].Comment Math Univ Carolinae,1996,37(4):757-774.
[10] GRABNER E M,GRABNOR G C,MIYAZAKI K.On properties of relative metacompactness and paracompactness type[J].Topology Proceedings,2000,25(Summer):145-177.
[11] GRABNER E M,GRABNOR G C,MIYAZAKI K,et al.Relative collectionwise normality[J].Appl Gen Topol,2004,5(2):199-212.
[12] KAWAGUCHI S,SOKEI R.Some relative properties on normality and paracompactness,and their absolute embeddings[J].Comment Math Univ Carolinae,2005,46(3):475-495.
[1] 李传华, 冯春华. 一类二阶常p-Laplace系统周期解的存在性[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 28-32.
[2] 孟鑫, 范钦杰, 王宏仁. 集值离散动力系统的拓扑遍历性与链遍历性[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发