广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (1): 24-28.

• • 上一篇    下一篇

矩阵乘积核心逆在0点特征投影的刻画

涂登平, 刘晓冀   

  1. 广西民族大学数学与计算机科学学院,广西南宁530006)
  • 收稿日期:2010-10-20 发布日期:2018-11-16
  • 通讯作者: 刘晓冀(1972—),男,江西萍乡人,广西民族大学教授,博士。E-mail: xiaojiliu72@yahoo.com.cn
  • 基金资助:
    国家自然科学基金资助项目(11061005)

Eigenprojection of Core Inverse of Matrix MultiplicationCorresponding to Point 0

TU Deng-ping, LIU Xiao-ji   

  1. College of Mathematics and Computer Science,Guangxi Universityfor Nationalities,Nanning Guangxi 530006,China
  • Received:2010-10-20 Published:2018-11-16

摘要: 本文旨在讨论矩阵乘积核心逆在0点特征投影的一些性质,研究具有相同核心逆特征投影的两矩阵之间的关系,给出相同核心逆特征投影条件下核心逆的扰动界。

关键词: 核心逆, 特征投影, 扰动

Abstract: The aim of this paper is to disscuse some characteristics of the core inverse of matrix multiplication corressponding to point 0eigenprojection.It studies the relationship between two matrixes with the samecharacteristic eigenprojection of core inverse and gives the pertubation of the core inverse in the case of same eigenprojection.

Key words: core inverse, eigenprojection, pertubation

中图分类号: 

  • O241.7
[1] 杜鸿科,张希花,郑艳萍,等.Drazin可逆算子在0点特征投影的刻画[J].陕西师范大学学报:自然科学版,2006,12:21-24.
[2] BAKSALARY O M,TRENKLER G.Core inverse of matrices[J].Linear and Multilinear Algebra,2010,58(6):681-697.
[3] KOLIHA J J,STRASKRABA I.Power bounded and exponentially bounded matrices[J].Applications of Mathematics,1999,44(4):289-308.
[4] CASTRO-GONZALEZ N,KOLIHA J J,WEI Yi-min.Perturbation of the Drazininverse for matrices with equal eigen-projections at zero[J].Linear Algebraand its Applications,2000,312(1/3):181-189.
[5] MARSAGLIA G,STYAN G P H.Equalities and inequalities for ranks ofmatrices[J].Linear and Multilinear Algebra,1974,2(3):269-292.
[6] WEI Yi-min.A characterization and representation of the generalizedinverse A(2)T,S and its applications[J].Linear Algebra and Its Applications,1998,280(2/3):87-96.
[7] 陈永林.{2}-广义逆的一种表示及其应用[J].应用数学学报,1992,15(2):145-150.
[8] JOSHI V N.Remarks on iterative methods for computing the generalized inverse[J].Studia Sci Math Hungar,1973,8:457-461.
[9] DU Hong-ke,DENG Chun-yuan.The representation and characterization of Drazin inverse of operators on a Hilbert space[J].Linear Algebra and its Applications,2005,407:117-124.
[10] WEI Yi-min,QIAO San-zheng.The representation and approximation of the Drazin inverse of a linear operator in Hilbert space[J].Applied Math Comput,2003,138(1):77-89.
[11] 魏益民.Banach空间中Drazin逆的表示与扰动[J].数学年刊,2000,21:39-46.
[12] 王宏兴,刘晓冀.整环上矩阵的加权广义逆[J].四川师范大学学报:自然科学版,2009,32(6):734-737.
[13] HARTING R E,SPINDELBOCK K.Matrices for which A< and A+commute[J].Linear and Multilinear Algebra,1983,14(3):241-256.
[1] 项琴琴, 廖志贤, 李廷会, 蒋品群, 黄国现. 电网随机扰动下的光伏微网逆变器建模及控制研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 19-25.
[2] 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83.
[3] 谢蓉,邹艳丽,傅杰. 基于动力学的电网发电机故障恢复策略研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 1-6.
[4] 戴静娱, 张学良, 邓敏艺, 谭惠丽. 位置扰动对激发介质中螺旋波动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发