广西师范大学学报(自然科学版) ›› 2014, Vol. 32 ›› Issue (3): 46-51.

• • 上一篇    下一篇

一类具有切向边界的无散度多小波

蒋英春, 孙青青   

  1. 桂林电子科技大学数学与计算科学学院, 广西桂林541004
  • 收稿日期:2013-09-12 出版日期:2014-09-25 发布日期:2018-09-25
  • 通讯作者: 蒋英春(1980—),女,山西应县人,桂林电子科技大学副教授,博士。E-mail:guilinjiang@126.com
  • 基金资助:
    国家自然科学基金资助项目(11201094,11161014)

A Class of Divergence-free Multiwavelets with Tangential Boundary

JIANG Ying-chun, SUN Qing-qing   

  1. School of Mathematics and Computational Science,Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2013-09-12 Online:2014-09-25 Published:2018-09-25

摘要: 具有切向边界的无散度小波在向量场的数值模拟中扮演着重要的角色.鉴于Hardin-Marasovich小波函数的零边值性质和简单结构,主要研究一类利用Hardin-Marasovich小波函数构造的具有切向边界的三维各向同性无散度多小波。首先,基于Hardin-Marasovich小波函数的微分关系,证明了具有切向边界的无散度向量场在对应的向量尺度空间上的双正交投影还是无散度的。其次,利用无散度空间的刻画给出了各向同性无散度尺度函数的定义,并证明对应的无散度尺度函数空间构成了一个无散度多尺度分析。最后,定义各向同性无散度多小波,给出切向边界无散度向量在无散度小波基下分解系数与经典小波基下分解系数的关系,从而说明无散度向量的小波分解系数可快速计算。

关键词: 无散度, 多小波, 切向边界, 各向同性

Abstract: Divergence-free wavelets with tangential boundary plays an important role in numerical simulation of vector fields. In view of the zero boundary and the simple structure of Hardin-Marasovich wavelets, a class of three-dimensional isotropic divergence-free wavelets with tangential boundary are studied. Firstly, based on differential relations of Hardin-Marasovich wavelet functions, it is proved that the bi-orthogonal projection of divergence-free vector fields is still divergence-free. Then, the definition of isotropic divergence-free scale functions are given based on the characterization of divergence-free space, and the corresponding divergence-free scale spaces are proved to form a multiresolution analysis. Finally, the isotropic divergence-free multiwavelets are defined, and the relation between the decomposition coefficients of the divergence-free wavelets and the classical wavelets is given, which shows that the divergence-free decomposition coefficients can be fastly computed.

Key words: divergence-free, multiwavelets, tangential boundary, isotropic

中图分类号: 

  • O174.2
[1] DERIAZ E, PERRIER V. Divergence-free and curl-free wavelets in two dimensions and three dimensions:application to tuburlent flows[J]. Journal of Turbulence, 2006, 7(3):37.
[2] STEVENSON R. Divergence-free wavelet bases on the hypercube:free-slip boundary conditions and applications for solving the instationary Stokes equations[J]. Mathematics of Computation, 2011, 80:1499-1523.
[3] HAROUNA S K, PERRIER V. Effective construction of divergence-free wavelets on the square[J]. Journal of Computational and Applied Mathematics, 2013, 240:74-86.
[4] JIANG Ying-chun, SUN Qing-qing. Three-dimensional biorthogonal divergence-free and curl-free wavelets with free-slip boundary[J]. Journal of Applied Mathematics, 2013:954717.
[5] DAHMENW, HAN Bing, JIA Rong-qing, et al. Biorthogonal multiwavelets on the interval:cubic Hermite splines[J]. Constructive Approximation, 2000, 16(2):221-259.
[6] DAHMEN W, KUNOTH A, URBANK. Biorthogonal spline wavelets on the interval-stability and moment conditions[J]. Applied and Computational Harmonic Analysis, 1994, 6:132-196.
[7] HARDIN D P,MARASOVICH J A. Biorthogonal multiwavelets on [-1,1][J]. Applied and Computational Harmonic Analysis, 1999, 7(1):34-53.
[8] LAKEY J D, PEREYRAM C. Divergence-free multiwavelets on rectangular domains[C]// Lecture Notes in Pure and Applied Mathematics. New York:Dekker, 2000:203-240.
[9] AMROUCHE C, BERNARDI C, DAUGEM, et al. Vector potentials in three dimensional nonsmooth domains[J]. Mathematical Methods in Applied Science, 1998, 21:823-864.
[10] LEMARIE-RIEUSSET P G.Analyse multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs á divergence nulle[J]. Revista Matemática Iberoamericana, 1992, 8(2):221-237.
[1] 李珊珊, 费铭岗. Dunkl-Clifford分析框架下的Hermite多项式[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发