广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (2): 56-63.doi: 10.16088/j.issn.1001-6600.2015.02.009

• • 上一篇    下一篇

北仑河口及其邻近海域物质输运滞留时间研究

李谊纯, 董德信, 王一兵   

  1. 广西科学院广西北部湾海洋研究中心,广西南宁530007
  • 收稿日期:2015-01-06 出版日期:2015-02-10 发布日期:2018-09-20
  • 通讯作者: 王一兵(1974—),女(满族),吉林永吉人,广西科学院研究员,博士。E-mail: wangyb@gxas.cn
  • 基金资助:
    国家自然科学基金资助项目(41266002),广西自然科学基金北部湾重大专项(2011GXNSFE018002)

Transport Time Scale in the Beilun River Estuary and Its Adjacent Area

LI Yi-chun, DONG De-xin, WANG Yi-bing   

  1. Guangxi Beibu Gulf Research Center, Guangxi Academy of Science, Nanning Guangxi 530007, China
  • Received:2015-01-06 Online:2015-02-10 Published:2018-09-20

摘要: 河口、近岸物质的输运时间尺度是将海洋物理过程与生态过程联系起来的一个重要指标,反映了水体内物质更新速率。为有效控制北仑河口及其临近海域环境污染和促进海岸线资源的合理开发,开展近岸物质输运的时间尺度研究具有重要意义。基于此目的,本文建立了平面二维高分辨率物质输运数学模型,对北仑河口至珍珠湾海域滞留时间的空间变化及其对于径流、潮差、地形等因素的响应进行了研究。结果显示,在北仑河口外部海域,滞留时间一般不超过20 h,在口门附近,在不同的径流量、潮差的情况下,滞留时间变幅较大,约为30~200 h;在珍珠湾海域,滞留时间的空间及随潮差的变化亦很大,珍珠湾内的Z1区域最大可达413.7 h,湾口处的Z4区域,最小仅为3.5 h。在空间上,北仑河口及其邻近海域的滞留时间在纵向上的变化呈现明显的自口门向外海逐渐减小的趋势,减小的幅度逐渐变小,说明径流的影响逐渐减小,在横向上滞留时间自深槽向浅滩逐渐增大。珍珠湾海湾边缘的浅水区,滞留时间明显大于深水区域的滞留时间。北仑河口区域滞留时间与径流量呈现明显的二次函数或线性函数关系,径流的影响向外海逐渐减弱,在深槽处大于浅滩处。滞留时间随潮差的增大而减小,变幅在口门处大于外海。北仑河口滞留时间主要受潮汐的影响。

关键词: 北仑河口, 珍珠湾, 滞留时间, 数值模拟

Abstract: Transport time scale of estuary and nearshore areas is an important agent connecting the marine physical processes and the ecological processes which reflace the exchange of water and materials in it. It is of vital importance to investigate the transport time scale in the Beilun River estuary to control marine environmental pollutions efficiently and to promote the reasonable shoreline development. A high-resolution 2-Dimensional numerical model is established and applied in the Beilun River estuary to calculate the residence times and their reactions to river discharge, tidal range and topography. The results show that the residence times in the outer areas adjacent to the Beilun River estuary are less than 20h. Near the river mouth, the residence times exhibit great variations with a range between 30h to 200h under different conditions of river discharges and/or tidal ranges. In the Zhenzhu Gulf, the residence times show great spatial variations as tidal range changes. In the inner subzone Z1, the residence time is 413.7h, while in the outer subzone Z4, the residence time is only 3.5h. The residence time decreases gradually from the river mouth to outer areas and from the channel to the shoal. In the Zhenzhu Gulf, the residence time is much longer than those in the marginal shallow zones. The residence time can be fitted satisfactorily with the river discharge by quadratic polynomials. the influences of river discharge to residence time become weaker from river mouth to the outer zones and from channel to shallow areas. The residence time increases as the tidal range decreases and the changes are larger near river mouth than that in the outer seas. In the Beilun River estuary, the dominate influence on residence time is due to tidal flushing rather than river dischange.

Key words: Beilun River estuary, Zhenzhu Gulf, residence time, numerical simulation

中图分类号: 

  • P76
[1] CHANDRA S D, CHO Y K, KIM T W. Spatio-temporal variation of flushing time in the Sumjin River estuary[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23(1):119-130.
[2] AWAJI T, IMASATO N, KUNISHI H. Tidal exchange through a strait:a numerical experiment using a simple model basin[J]. Journal of Physical Oceanography, 1980, 10:1499-1508.
[3] OLIVERIA A, BAPTISTA A M. Diagnostic modeling of residence time in estuaries[J]. Water Resources Research, 1997,33(8):1935-1946.
[4] GILLIBRAND P A. Calculating exchange times in a Scottish fjord using a two-dimensional, laterally-integrated numerical model[J]. Estuarine, Coastal and Shelf Science, 2001,53:437-449.
[5] DELHEZ E J M,DELEERSNIJDER E. Age and the time lag method[J]. Continental Shelf Research, 2008(28):1057-1067.
[6] DYER K R, TAYLOR P A. A simple segmented prism model of tidal mixing in well-mixed estuaries[J]. Estuarine and Coastal Marine Science, 1973, 1:411-448.
[7] PRITCHARD D W. Salt balance and exchange rate for Chincoteague Bay[J]. Chesapeake Science, 1960(1):48-57.
[8] 李谊纯,牙韩争, 董德信.河口物质输运时间尺度研究综述[J]. 广西科学院院报,2014, 30(3):143-147.
[9] TAKEOKA H. Fundamental concepts of exchange and transport time scales in a coastal sea[J]. Continental Shelf Research, 1984, 3 (3):322-326.
[10] 乔延龙, 林昭进, 邱永松. 北部湾秋、冬季渔业生物群落结构特征的变化[J]. 广西师范大学学报:自然科学版, 2008, 26(1):100-104.
[11] 蒋磊明, 陈波, 邱绍芳,等. 钦州湾潮流模拟及其纳潮量和水交换周期计算[J].广西科学, 2009, 16(2):193-195.
[12] 张卓, 叶荣辉,卜春春. 北海铁山港建港方案对铁山湾潮流泥沙的影响研究[J].水道港口, 2009, 30(6):402-407.
[13] 梁士楚, 刘镜法, 梁铭忠. 北仑河口国家级自然保护区红树植物群落研究[J]. 广西师范大学学报:自然科学版, 2004, 22(2):70-76.
[14] 张良建, 庾太林, 韩增超,等. 北仑河口国家级自然保护区两栖爬行动物调查[J]. 广西师范大学学报:自然科学版, 2013, 31(1):112-118.
[15] 罗万次, 苏搏, 刘熊,等. 广西北仑河口红树林保护区表层海水溶解态重金属时空分布及其影响因素[J].海洋通报, 2014, 33(6):668-675.
[16] 何祥英, 苏搏, 许廷波,等. 广西北仑河口红树林湿地大型底栖动物多样性的初步研究[J]. 湿地科学与管理,2012, 8(2):45-48.
[17] 李谊纯. 瓯江下游河段污染物质滞留时间数值模拟研究[J]. 水道港口,2011. 32(6):434-439.
[18] 李谊纯,董德信. 灌河口潮汐不对称数值模拟研究[J]. 海洋工程,2013,31(4):93-89.
[19] 李谊纯. 一个潮流不对称计算方法及其在北仑河口的应用[J]. 海洋工程,2014, 32(4):110-116.
[1] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[2] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[3] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[4] 张良建, 庾太林, 韩增超, 刘晓辉, 苏博. 北仑河口国家级自然保护区两栖爬行动物调查[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 112-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发