广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (2): 29-35.doi: 10.16088/j.issn.1001-6600.2015.02.005

• • 上一篇    下一篇

基于统计分布熵的抑郁症脑电信号分析

王凯明1,2,3, 周海燕1,2,3, 郭家梁1,2,3, 杨孝敬1,2,3, 王刚4, 钟宁1,2,3   

  1. 1.北京工业大学国际WIC研究院,北京100124;
    2.磁共振成像脑信息学北京市重点实验室,北京100124;
    3. 脑信息智慧服务北京市国际科技合作基地,北京100124;
    4.首都医科大学附属北京安定医院,北京100088
  • 收稿日期:2015-01-03 出版日期:2015-02-10 发布日期:2018-09-20
  • 通讯作者: 钟宁(1956—),男,北京人,北京工业大学教授,博士。E-mail: zhong.ning.wici@gmail.com
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2014CB744605,2014CB744603);国家国际科技合作专项基金资助项目(2013DFA32180);国家自然科学基金资助项目(61272345)

Analysis of Depression Electroencephalogram Basedon Statistics Distribution Entropy

WANG Kai-ming1,2,3, ZHOU Hai-yan1,2,3, GUO Jia-liang1,2,3,
YANG Xiao-jing1,2,3, WANG Gang4, ZHONG Ning1,2,3   

  1. 1. International WIC Institute, Beijing University of Technology, Beijing 100124, China;
    2. Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics,Beijing 100124, China;
    3. Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing 100124, China;
    4. Beijing Anding Hospital, Beijing 100088, China
  • Received:2015-01-03 Online:2015-02-10 Published:2018-09-20

摘要: 针对目前抑郁症研究和诊断中量化分析参数和分析方法不足的情况,本文提出和定义一种能对脑电活动的状态分布进行描述、并能用来计算和区分抑郁症患者和正常人脑电活动差异的统计分布熵方法。应用该方法对抑郁症患者和正常对照组的脑电信号统计分布熵进行数值计算,然后分析讨论它们之间的差异,最后对结果进行了统计分析。实验结果表明:抑郁症患者脑电的状态分布熵在部分脑区显著高于正常健康人,表现出较强的差异性。证明该统计分布熵能够表征大脑电活动的分布状态,提供反映其活动是否发生异变的信息,可以作为度量大脑电活动分布状态和分析脑电信号是否异常的一个物理参数。这对其用作诊断其他脑精神疾病的物理指标也具有积极意义。

关键词: 统计分布熵, 脑电信号, 抑郁症

Abstract: A method is proposed to calculate and analyze electroencephalogram to improve the situation in which there is an emergency for the effective quantitative parameters for mental disorders. The method first defines a statistics distribution entropy to describe the state distribution of brain electrical activity, which can calculate and analyze the state difference of it. The entropy is applied to numerical calculation of electroencephalogram signal between depression patients and normal control group. Meanwhile, the difference is compared between them. The experiment shows that the statistics distribution entropy in depression patients is significantly greater than that of the normal healthy people in some brain regions. Further analysis proves that the entropy can be used as a parameter to measure the state distribution of brain electrical activity and to analyze its difference. The analysis also tells that the entropy plays an important role in diagnosis of other mental disorder.

Key words: statistics distribution entropy, electroencephalogram, depression

中图分类号: 

  • TP391.4
[1] CHEN Min-you, FANG Yong-hui, ZHENG Xu-fei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing and Control, 2014, 11:10-16.
[2] LEE S H, LIM J S, KIM J K, et al. Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance[J]. Computer Methods and Programs in Biomedicine, 2014, 116(1):10-25.
[3] WANG Jing, WU Ying-ying, QU Hao, et al. EEG-based fatigue driving detection using correlation dimension[J]. Journal of Vibroengineering, 2014, 16(1):407-413.
[4] KOUCHAKI S, SANEI S, ARBON E L, et al.Tensor based singular spectrum analysis for automatic scoring of sleep EEG[J]. IEEE Transactions On Neural Systems and Rehabilitation Engineering:A Publication of the IEEE Engineering in Medicine and Biology Society, 2015, 23(1):1-9.
[5] ZORICK T, MANDELKERN M A. Multifractal detrended fluctuation analysis of human eeg:preliminary investigation and comparison with the wavelet transform modulus maxima technique[J]. PLOS ONE, 2013, 8(7):e68360.
[6] STAMOULIS C, SCHOMER D L, CHANG B S. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination[J]. Epilepsy Research, 2013, 105(3):299-315.
[7] ZHANG Chong, YU Xiao-lin, YANG Yong, et al. Phase synchronization and spectral coherence analysis of EEG activity during mental fatigue[J]. Clinical EEG and Neuroscience, 2014, 45(4):249-256.
[8] YANG Chun-feng, Le BOUQUIN J R, BELLANGER J J, et al. A new strategy for model order ldentification and its application to transfer entropy for EEG signals analysis[J]. IEEE Transactions on Biomedical Engineering, 2013,60(5):1318-1327.
[9] IGNACCOLO M, LATKA M, JERNAJCZYK W, et al. The dynamics of EEG entropy[J]. J Biol Phys, 2010,36(2):185-196.
[10] OUYANG Gao-xiong,LI Jing, LIU Xian-zeng, et al. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis[J]. Epilepsy Research, 2013, 104(3):246-252.
[11] 严小卫,田强,张师超.肿瘤基因图集(TCGA)中恶性胶质瘤数据的挖掘[J].广西师范大学学报:自然科学版,2012,30(3):109-112.
[1] 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23.
[2] 肖逸群, 宋树祥, 夏海英. 基于多特征的快速行人检测方法及实现[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 61-67.
[3] 王勋, 李廷会, 潘骁, 田宇. 基于改进模糊C均值聚类与Otsu的图像分割方法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 68-73.
[4] 孙妤喆, 卢磊, 罗晓曙, 郭磊, 郝占龙, 唐堂. 结合非局部均值滤波的双边滤波图像去噪方法[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 32-38.
[5] 蔡冰, 张灿龙, 李志欣. 基于联合直方图的红外与可见光目标融合跟踪[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 37-44.
[6] 夏海英, 喻潇琪. 基于对比度金字塔图像融合的自发笑脸识别[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 45-52.
[7] 夏海英. 基于改进的SLIC区域合并的宫颈细胞图像分割[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 93-100.
[8] 何鹏, 刘高凯, 李静辉. 基于机器视觉的疲劳驾驶监测预警系统[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 25-29.
[9] 陈锦, 罗晓曙. 基于小波变换与野草算法的细胞图像特征提取与识别[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 22-28.
[10] 王冬旭, 宋树祥, 蒋品群. 基于BP神经网络的竹片正反面识别算法[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 14-19.
[11] 华梓铮, 华泽玺. 基于NSCT的含噪图像边缘检测算法[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 26-34.
[12] 马先兵, 孙水发, 覃音诗, 郭青, 夏平. 基于粒子滤波的on-line boosting目标跟踪算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 100-105.
[13] 孙水发, 李乐鹏, 董方敏, 邹耀斌, 陈鹏. 基于迭代阈值的子块部分重叠双直方图均衡算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 119-126.
[14] 黄志敏, 王东利, 文颖, 吕岳. 基于改进网格特征的离线笔迹识别[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 132-137.
[15] 王峰, 靳小波, 于俊伟, 王贵财. V-最优直方图及其在车牌分类中的应用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发