|
广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (1): 74-79.doi: 10.16088/j.issn.1001-6600.2015.01.012
孟淑慧, 尹方虎, 谢光明
MENG Shu-hui, YIN Fang-hu, XIE Guang-ming
摘要: 设V是域K上的一个全赋值环,B1=⊕i∈ZAi,0Xi1,B2=⊕j∈ZA0,jXj2分别是K[x1,x-11],K[x2,x-12]上V的分次扩张,令A=⊕i,j∈ZAi,jXi1Xj2是K[x1,x2;x-11,x-12]的一个子集, 本文对K[x1,x2;x-11,x-12] 中V的分次扩张进行了刻画。对B1、B2的所有可能的情形,本文证明了A的存在性,并讨论了B1、B2在若干条件下,A的唯一性。
中图分类号:
[1] BRUNGS H H, MARUBAYASHI H, OSMANAGIC E. Gauss extensions and total graded subrings for crossed product algebras[J]. J Algebra, 2007,316(1):189-205. [2] BRUNGS H H, MARUBAYASHI H, OSMANAGIC E. Primes of Gauss extensions over crossed product algebras[J]. Comm Algebra,2012,40(6):1951-1973. [3] XIE Guang-ming,MARUBAYASHI H. A classification of graded extensions in a skew Laurent polynomial ring[J]. J Math Soc Japan,2008,60(2):423-443. [4] XIE Guang-ming,MARUBAYASHI H. A classification of graded extensions in a skew Laurent polynomial ring Ⅱ[J]. J Math Soc Japan,2009,61(4):1111-1130. [5] XIE Guang-ming,CHEN Yi, MARUBAYASHI H, et al. A new classification of graded extensions in a skew Laurent polynomial ring[J]. Far East J Math Sci,2010,40(1):37-44. [6] 谢光明,谷学伟,陈义. Z(2) 上的纯锥与K[Z(2),σ]上的平凡分次扩张[J]. 广西师范大学学报:自然科学报,2009,27(4):36-40. [7] 刘凤. (n)上的分次映射与对应的分次扩张[D]. 桂林:广西师范大学,2011. [8] BRUNGS H H,SCHRÖDER M. Valuation rings in Ore extensions[J]. J Algebra,2001,235(2):665-680. [9] MARUBAYASHI H, MIYAMOTO H, UEDA A. Non-commutative valuation rings and semi-hereditary orders[M]. Dordrecht: Kluwer Academic Publishers, 1997. [10] XIE Guang-ming,WEI Chun-hao,LIU Feng. Graded maps of (2) and corresponding graded extensions[J]. Southeast Asian Bull Math,2012,36(4):565-573. |
[1] | 卫银虎, 庞桂喜, 吴娇, 谢光明. Q(K G)上的不变高斯扩张[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 55-57. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |