广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (1): 59-66.doi: 10.16088/j.issn.1001-6600.2015.01.010

• • 上一篇    下一篇

点稳定子为Z4×Z2的8度1-正则Cayley

徐尚进1,2, 李平山1,2, 黄海华1,2, 李靖建1,2   

  1. 1. 广西大学数学与信息科学学院,广西南宁530004;
    2. 广西高校数学及其应用重点实验室,广西南宁530004
  • 收稿日期:2014-07-16 出版日期:2015-03-15 发布日期:2018-09-17
  • 通讯作者: 徐尚进(1959—),男,安徽庐江人,广西大学教授,博士。E-mail:xusj@gxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(10961004,11226141,11361006);广西自然科学基金资助项目(2013GXNSFAA019018;2013GXNSFBA019018;2012GXNSFBA053010);广西大学科研基金资助项目(XBZ110328)

8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2

XU Shang-Jin1,2, LI Ping-shan1,2, HUANG Hai-hua1,2, LI Jing-jian1,2   

  1. 1.College of Mathematices and Information Sciences, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Colleges and Universities Key Laboratory of Mathematics and Its Applications, Nanning Guangxi 530004, China
  • Received:2014-07-16 Online:2015-03-15 Published:2018-09-17

摘要: 一个图Γ称为1-正则图, 如果图Γ的图自同构群Aut(Γ)作用在它的弧集上正则. 本文给出了点稳定子为Z4×Z2的8度1-正则Cayley图的一个完全分类。

关键词: Cayley图, 1-正则, 无核

Abstract: A graph Γ is called 1-regular if its full automorphism group Aut(Γ) acts regularly on its arcs. In this paper, a complete characterization for 8-valent 1-regular Cayley Graphs with point stabilizer is presented. It is proved that there exists only 2 core-free 8-valent 1-regular Cayley graphs whose point stabilizer is Z4×Z2.

Key words: 1-regular, Cayley graph, core-free

中图分类号: 

  • O157
[1] BIGGS N. Algebraic graph theory[M]. 2nd ed. Cambridge: Cambridge University Press, 1993.
[2] XU Ming-yao. Automorphism groups and isomorphisms of Cayley digraphs[J]. Discrete Math, 1998, 182(1/3): 309-319.
[3] CONDER M D E, PRAEGER C E. Remarks on path-transitivity in finite graphs[J]. European Journal of Combinatorics, 1996, 17(4):371-378.
[4] FRUCHT R. A one-regular graph of degree three[J]. Can J Math, 1952, 4(3):240-247.
[5] LI Jing-jian, LU Zai-ping. Cubic s-arc transitive Cayley graphs[J]. Discrete Math, 2009, 309(20): 6014-6025.
[6] XU Shang-jin, FANG Xing-gui, WANG Jie, et al. 5-arc transitive cubic Cayley graphs on finite simple groups[J]. European J Combin, 2007, 28(3): 1023-1036.
[7] DIXON J D, MORTIMER B. Permutation groups[M]. Berlin: Springer-Verlag, 1996.
[1] 李靖建, 朱文英, 解雅婷. 奇素数度的1-正则Cayley图[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 121-125.
[2] 徐尚进, 秦艳丽, 张跃峰, 李靖建. 具有初等交换点稳定子的9度1-正则Cayley图[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 66-71.
[3] 李靖建, 徐尚进, 王蕊. 具有交换点稳定子群的6度1-正则Cayley图[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发