广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (2): 61-66.doi: 10.16088/j.issn.1001-6600.2016.02.009

• • 上一篇    下一篇

宫颈细胞图像的特征提取与识别研究

刘艳红, 罗晓曙, 陈锦, 郭磊   

  1. 广西师范大学电子工程学院,广西桂林541004
  • 收稿日期:2015-12-15 出版日期:2016-06-25 发布日期:2018-09-14
  • 通讯作者: 罗晓曙(1961—),男,湖北应城人,广西师范大学教授,博士。E-mail:lxs@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(21327007);广西研究生教育创新计划项目(YCSZ2015101)

Research on Cervical Cell Image Feature Extraction and Recognition

LIU Yanhong, LUO Xiaoshu, CHEN Jin, GUO Lei   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004,China
  • Received:2015-12-15 Online:2016-06-25 Published:2018-09-14

摘要: 宫颈涂片的检查是诊断宫颈癌的最有效手段之一,而传统的宫颈细胞识别系统存在很大的局限,例如假阴性率和假阳性率过高。本文为了提高宫颈细胞涂片诊断的效率和准确率,首先提取宫颈细胞的形态特征和极径灰度中值,然后采用AdaBoost-SVM多特征融合分类器进行分类。实验研究结果表明:通过特征提取方法与AdaBoost-SVM多特征融合分类器结合,明显提高了宫颈细胞涂片筛查的效率和准确率,降低了宫颈癌的误诊率。

关键词: 极径, 灰度中值, 支持向量机, AdaBoost, AdaBoost-SVM分类器

Abstract: Cervical smear examination is one of the most effective means of diagnosis of cervical cancer, while the traditional cervical cell recognition system has significant limitations, with low false-negative and false-positive rates. Firstly, morphological characteristics and the gray values of pole in cervical cells are extracted. Then AdaBoost-SVM feature fusion classifier is used to classify the cervical cells in order to improve the efficiency and accuracy of diagnosis of cervical smears. The research results show that the combination of extraction method and multi-feature fusion AdaBoost-SVM classifier can significantly improve the efficiency and accuracy of cervical smear screening, and can reducethe misdiagnosis rate of cervical cancer.

Key words: polar radius, gray median in value, support vector machine, AdaBoost, AdaBoost-SVM classifier

中图分类号: 

  • TP391
[1] FERLAY J,SOERJOMATARAM I, DIKSHIT R, et al. Cancer in cidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J/OL]. International Journal of Cancer, 2015, 136(5): E359-E386. http://onlinelibary.wiley.com/doi/10.1002/ijc.29210/abstract.
[2] JENSEN B. Neuro-Fuzzy Classification of Cells in Cervical Smears[D]. Denmark: Technical University of Denmark, 1999.
[3] NIKOLAOS A, GEORGE D, JAN J. Pap-Smear classification using efficient second order neural network training algorithms[M]//GEORGE A V, THEMISTOKLIS P. Methods and Applications of Aritificial Intelligence: Berlin Heidelberg: Springer Verlag 2004:230-245.
[4] YANNIS M, GEORGIOS D, JAN J. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification[J]. Computers in Biology and Medicine,2009, 39(1):69-78.
[5] CHEN Yungfu, HUANG Pochi, Lin Kercheng, et al. Semi-Automatic segmentation and classification of pap smear cells[J]. IEE Journal of Biomedical and health informatics, 2014, 18(1):94-108.
[6] 张晓龙,任芳. 支持向量机与AdaBoost的结合算法研究[J]. 计算机应用研究,2009(1):77-78.
[7] WANG Ruihu. AdaBoost for feature selection, classification and its relation with SVM, A Review[J]. Physics Procedia,2012,25:800-807.
[8] YANG Jian, ZHANG D, FRANGI A F, et al.Two dimensional PCA: a new approach to appearance-based face Representation and recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(1):131-137.
[9] ABID S, VINOD S, RAJEEV G, Hybrid ensemble learning technique for screening of cervical cancer using Papanicolaou smear image analysis[J]. Personalized Medicine Universe, 2015, 4:54-62.
[10] NORUP J. Classification of pap-smear data by transductive neuro-fuzzy methods[D]. Denmark: Technical University of Denmark, 2005.
[11] CHANKONG T, THEERA-UMPON N, AUEPHANWIRIYAKUL S. Automatic cervical cell segmentation and classification in Pap smears[J]. Computer Methods and Programs in Biomedicine,2014, 113(2):539-556.
[1] 朱勇建, 彭柯, 漆广文, 夏海英, 宋树祥. 基于机器视觉的太阳能网版缺陷检测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 105-112.
[2] 吕凯晨, 闫宏飞, 陈翀. 基于沪深300成分股的量化投资策略研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 1-12.
[3] 李子彦, 刘伟铭. 一种基于局部HOG特征的运动车辆检测方法[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 1-13.
[4] 邝先验, 朱磊, 吴赟, 徐晨. 基于Adaboost算法和颜色特征的公交车辆视频检测[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 9-18.
[5] 陈思溢, 罗强, 黄辉先. 基于群决策理论的协调控制子区划分方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 18-25.
[6] 左信, 黄海龙, 刘建伟. 非凸共轭梯度p范数正则化SVM分类算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 51-58.
[7] 王世明, 徐建闽, 李日涵. 城市快速路入口匝道控制算法的改进[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 1-6.
[8] 严晓明, 郑之. 基于混合仿生算法的SVM参数优化[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发