广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 133-140.doi: 10.16088/j.issn.1001-6600.2017.03.017

• • 上一篇    下一篇

基于线粒体16S rDNA基因序列沼虾属的系统发育研究

张小敏1, 林勇2, 宾石玉1, 余艳玲2, 曾兰2, 钟丹丹1, 张永德2*   

  1. 1. 广西师范大学生命科学学院,广西桂林541006;
    2.广西水产科学研究院广西水产遗传育种与健康养殖重点实验室,广西南宁530021
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 张永德(1977—),男,山东潍坊人,广西水产科学研究院副研究员。E-mail:yondar@126.com
  • 基金资助:
    广西科学研究与技术开发计划项目(桂科能14121008-4-1);国家现代农业产业技术体系广西罗非鱼创新团队建设项目(nycytxgxcxtd-08-01)

Phylogeny of Macrobrachium Species Using Mitochondrial16S Ribosomal DNA

ZHANG Xiaomin1, LIN Yong2, BIN Shiyu1, YU Yanling2,ZENG Lan2, ZHONG Dandan1, ZHANG Yongde2*   

  1. 1.College of Life Science, Guangxi Normal University, Guilin Guangxi 541006,China;
    2.Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic GeneticBreeding and Healthy Aquaculture, Nanning Guangxi 530021,China
  • Online:2017-07-25 Published:2018-07-25

摘要: 为了解沼虾属Macrobrachium各种间的系统发育关系,本文通过PCR方法扩增罗氏沼虾M. rosenbergii线粒体16S rDNA基因片段,并测序。通过比对发现,511个位点中,可变位点178个,简约信息位点162个。在优化的模型中,碱基频率为ηA=0.306 3,ηC=0.065 7,ηG=0.204 6,ηT=0.423 3;替代矩阵为[A-C]=0.042 7,[A-G]=0.248 59,[A-T]=0.028 4,[C-G]=0.032 9,[C-T]=0.629 0,[G-T]=0.018 4;不变位点的比例为0.428 7,变异位点的Gamma参数为0.429 8。在所有物种中,发现转换值高于颠换值,16S基因的转换和颠换未达到饱和。利用贝叶斯法构建了Bayes树,长臂虾属Palaemon与其他沼虾属构成了显著的并系类群。所有的物种聚成3个大的分支,其中马来亚沼虾M. malayanum构成一个大分支,真沼虾M. carcinus、美洲沼虾M. americanum和非洲沼虾M. vollenhovenii构成另一个大的分支,其余32个沼虾品种构成第三大分支。而罗氏沼虾与大和沼虾M. japonicum、南方沼虾M. meridionalis、细额沼虾M. gracilirostre、嘉罗沼虾M. jaroense、霍氏沼虾M. horstii、热带沼虾M. placidulum、拟鳞指沼虾M. lepidactyloides、贪食沼虾M. lar、宽掌沼虾M. latimanus、俄亥俄沼虾M. ohione形成一个群集。

关键词: 沼虾属, 线粒体DNA, 16S rDNA, 系统发生

Abstract: To understand the evolutionary relationship among the Macrobrachium species, mitochondrial partial 16S ribosomal DNA of M. rosenbergii was amplified and sequenced. By sequence alignment from 511 characters, 178 characters are variable and 162 characters are parsimony informative. The parameters specified under optimum model were nucleotide frequencies of ηA=0.306 3, ηC=0.065 7, ηG=0.204 6, ηT=0.423 3; reversal rates of change for [A-C]=0.042 7, [A-G]=0.248 59, [A-T]=0.028 4, [C-G]=0.032 9, [C-T]=0.629 0, [G-T]=0.018 4. The proportion of invariant sites was 0.428 7, and gamma shape distribution α=0.429 8. No substitution saturation was found as the level of transitional base substitutions was higher than the level of transversions over all genetic distances. Bayes phylogenetic tree was constructed by using Bayesian method. The out group Palaemon formed as paraphyletic to Macrobrachium with significant bootstrap value. Principally all species clustered into 3 big clades as their evolutionary relationship, in which, M. malayanum constitute a big clade, M. carcinus, M. americanum and M. vollenhovenii constituted another big clade, and the other 32 Macrobrachium constituted the third big clade. M. rosenbergii, M. japonicum, M. meridionalis, M. gracilirostre, M. jaroense, M. horstii, M. placidulum, M. lepidactyloides, M. lar, M. latimanus and M. ohione formed one cluster.

Key words: Macrobrachium, mitochondrial DNA, 16S rDNA, molecular phylogeny

中图分类号: 

  • S917
[1] WOWOR D, MUTHU V, MEIER R, et al. Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis[J]. Molecular Phylogenetics and Evolution, 2009, 52(2): 340-350.
[2] SHORT J W. A revision of Australian river prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae)[J]. Hydrobiologia, 2004, 525(1/2/3): 1-100.
[3] 刘瑞玉, 梁象秋,严生良. 中国长臂虾亚科的研究:I.沼虾属、瘦虾属和拟瘦虾属[C]// 甲壳动物学论文集. 北京: 海洋出版社, 1990: 102-134.
[4] CAI Y, NAIYANETR P, NG P K L. The freshwater prawns of the genus Macrobrachium Bate, 1868, of Thailand (Crustacea: Decapoda: Palaemonidae)[J]. Journal of Natural History, 2004, 38(5): 581-649.
[5] MURPHY N P, AUSTIN C M. Molecular taxonomy and phylogenetics of some species of Australian palaemonid shrimps[J]. Journal of Crustacean Biology, 2003, 23(1): 169-177.
[6] PEREIRA G. A cladistic analysis of the freshwater shrimps of the family Palaemonidae (Crustacea, Decapoda, Caridea)[J]. Acta Biologica Venezuelica, 1997, 17(sup1): 1-69.
[7] SCHUBART C D, CUESTA J A, RODRGUEZ A. Molecular phylogeny of the crab genus Brachynotus based on the 16S rRNA gene[J]. Hydrobiologia, 2001, 449(1-3): 41-46.
[8] VERGAMINI F G, PILEGGI L G, MANTELATTO F L. Genetic variability of the Amazon river prawn Macrobrachium amazonicum (Decapoda, Caridea, Palaemonidae)[J]. Contributions to Zoology, 2011, 80(1): 67-83.
[9] IBRAHIM M Y, NOR M S A, ABUKASHAWA S M A. Sequence analysis and molecular phylogeny of 16S rRNA gene fragments in four species of the Penaeid shrimps from the Sudanese Red Sea[J]. International Journal of Marine Science, 2015, 5(55): 1-9.
[10] 毛智超, 段亚飞, 刘萍, 等. 哈氏仿对虾线粒体16S rRNA和COⅠ基因的序列比较及其与仿对虾属(Penaeus)之间的系统进化分析[J].水产学报2016, 40(7): 1006-1017.
[11] SHULL H C, PREZ-LOSADA M, BLAIR D, et al. Phylogeny and biogeography of the freshwater crayfish Euastacus (Decapoda: Parastacidae) based on nuclear and mitochondrial DNA[J]. Molecular Phylogenetics and Evolution, 2005, 37(1): 249-263.
[12] MACHORDOM A, MACPHERSON E. Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence[J]. Molecular Phylogenetics and Evolution, 2004, 33(2): 259-279.
[13] DANIELS S R, HAMER M, ROGERS C. Molecular evidence suggests an ancient radiation for the fairy shrimp genus Streptocephalus (Branchiopoda: Anostraca)[J]. Biological Journal of the Linnean Society, 2004, 82(3): 313-327.
[14] HULTGREN K M, HURT C, ANKER A. Phylogenetic relationships within the snapping shrimp genus Synalpheus (Decapoda: Alpheidae)[J]. Molecular Phylogenetics and Evolution, 2014, 77: 116-125.
[15] CHEN C L, GOY J W, BRACKEN-GRISSOM H D, et al. Phylogeny of Stenopodidea (Crustacea: Decapoda) shrimps inferred from nuclear and mitochondrial genes reveals non-monophyly of the families Spongicolidae and Stenopididae and most of their composite genera[J]. Invertebrate Systematics, 2016, 30(5): 479-490.
[16] GUERRA A L, LIMA A V B, LUCATO JUNIOR R V, et al. Genetic variability and phylogenetic aspects in species of the genus Macrobrachium[J]. Genetics and Molecular Research, 2014,13(2:3646-3655.
[17] LIU M Y, CAI Y X, TZENG C S. Molecular systematics of the freshwater prawn genus Macrobrachium Bate, 1868 (Crustacea: Decapoda: Palaemonidae) inferred from mtDNA sequences, with emphasis on East Asian species[J]. Zoological Studies, 2007, 46(3): 272-289.
[18] JOSE D, NIDHIN B, ANIL KUMAR K P, et al. A molecular approach towards the taxonomy of fresh water prawns Macrobrachium striatum and M. equidens (Decapoda, Palaemonidae) using mitochondrial markers[J]. Mitochondrial DNA Part A, 2016, 27(4): 2585-2593.
[19] CHEN P C, SHIH C H, CHU T J, et al. Population structure and historical demography of the Oriental River Prawn (Macrobrachium nipponense) in Taiwan[J]. PloS One, 2015, 10(12): e0145927.
[20] PILEGGI L G, MANTELATTO F L. Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species[J]. Invertebrate Systematics, 2010, 24(2): 194-208.
[21] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780.
[22] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[23] XIA X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2013, 30(7): 1720-1728.
[24] DARRIBA D, TABOADA G L, DOALLO R, et al. jModelTest 2: more models, new heuristics and parallel computing[J]. Nature Methods, 2012, 9(8): 772.
[25] RONQUIST F, TESLENKO M, VAN DER MARK P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539-542.
[26] 黄桂菊, 喻达辉, 郭奕惠, 等. 珍珠贝基于16S rRNA基因序列的亲缘关系研究[J]. 南方水产, 2009, 5(6):47-53.
[27] EDWARDS S V, ARCTANDER P, WILSON A C. Mitochondrial resolution of a deep branch in the genealogical tree for perching birds[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1991, 243(1307): 99-107.
[28] XIA X, XIE Z, SALEMI M, et al. An index of substitution saturation and its application[J]. Molecular Phylogenetics and Evolution, 2003, 26(1): 1-7.
[29] URE M, FERNANDEZ-GUERRA A, MUNN C B, et al. Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments[J]. The ISME Journal, 2016,11(2): 478-489.
[30] PAGE T J, SHORT J W, HUMPHREY C L, et al. Molecular systematics of the Kakaducarididae (Crustacea: Decapoda: Caridea)[J]. Molecular Phylogenetics and Evolution, 2008, 46(3): 1003-1014.
[31] 杨频. 中国沼虾属分子系统学及日本沼虾群体遗传结构的研究[D]. 上海: 华东师范大学, 2007: 37-61.
[32] PILEGGI L, ROSSI N, WEHRTMANN I, et al. Molecular perspective on the American transisthmian species of Macrobrachium (Caridea, Palaemonidae)[J]. Zookeys, 2014, 457: 109.
[1] 肖咪云, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 一株产天然蓝色素细菌的分离鉴定[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 131-138.
[2] 王培, 曹建华, 宋德贵, 辜澜涛, 董研玲. 一株产海因酶菌种的筛选与鉴定[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发