广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (2): 101-107.doi: 10.16088/j.issn.1001-6600.2017.02.015

• • 上一篇    下一篇

碳点与人血清白蛋白的相互作用研究

邹华, 刘华荣*, 梅平   

  1. 长江大学化学与环境工程学院,湖北荆州434023
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 刘华荣(1980—),女,湖北荆州人,长江大学副教授。E-mail:70401773@qq.com
  • 基金资助:
    国家自然科学基金青年基金(21403017)

Interaction between Carbon Quantum Dots and Human Serum Albumin

ZOU Hua,LIU Huarong*,MEI Ping   

  1. School of Chemical and Environmental Engineering, Yangtze University, Jingzhou Hubei 434023, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 以柠檬酸为原料制备了碳点,并运用紫外-可见分光光度计、荧光分光光度计和透射电镜(TEM)对该碳点进行光谱与形貌表征。采用荧光光谱、圆二色谱以及紫外-可见吸收光谱等方法,在近生理条件下研究了碳点与人血清白蛋白(HSA)的相互作用。荧光猝灭和紫外-可见吸收光谱试验结果表明,人血清白蛋白(HSA)和碳点形成了静态复合物,相互作用力以氢键和范德华力为主,而且碳点会引起人血清白蛋白(HSA)构象发生变化。研究结果可以为碳点的生物安全性研究提供一定的理论信息。

关键词: 碳点, 柠檬酸, 人血清白蛋白(HSA), 荧光光谱, 圆二色谱, 紫外-可见吸收光谱

Abstract: Carbon quantum dots(CQDs)was synthesized from citric acid. The structures and optical properties of the obtained CQDs were characterized by UV-vis absorption spectroscopy, photolumine- scence spectroscopy and transmission electron microscope(TEM). The interaction between human serum albumin(HSA)and CQDs under physiological conditions was also investigated. The investigation was carried out with the use of uorescence spectroscopy, circular dichroism(CD)spectra and UV-vis spectroscopy. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA and CQDs. The hydrogen bond and Van der Waals’ force played predominant roles in the interaction process. Furthermore, it proved that CQDs could induce the conformational change of HSA. The research results provided a lot of important theoretic information for the biosafty evaluation of CQDs.

Key words: carbon quantum dots, citric acid, human serum albumin(HSA), fluorescence spectra, circular dichroism spectra, UV-vis absorbance spectra

中图分类号: 

  • Q512.1
[1] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science, 2002, 298:1759-1762.
[2] CHAN W C W, MAXWELL D J, GAO X, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current Opinion in Biotechnology, 2002, 13(1):40-46.
[3] XIAO Q, HUANG S, SU W, et al. Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102:76-82.
[4] MANDAL T K, PARVIN N. Rapid detection of bacteria by carbon quantum dots[J]. Journal of Biomedical Nanotechnology, 2011, 7(6):846-848.
[5] SUDLOW G, BIRKETT D J, WADE D N. The characterization of two specific drug binding sites on human serum albumin[J]. Molecular Pharmacology, 1975, 11(6):824-832.
[6] DONG Y, SHAO J, CHEN C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12):4738-4743.
[7] TRYNDA-LEMIESZ L. Paclitaxel-HSA interaction. Binding sites on HSA molecule[J]. Bioorganic & Medicinal Chemistry, 2004, 12(12):3269-3275.
[8] CABALLERO-QUINTERO A, PINEYRO-LOPEZ A, WAKSMAN N. In vitro binding studies of the peroxisomicine A1-BSA and-HSA interactions[J]. International Journal of Pharmaceutics, 2001, 229(1):23-28.
[9] POR M, LEMLI B, BLINT M, et al. Interaction of citrinin with human serum albumin[J]. Toxins, 2015, 7(12):5155-5166.[ZK)]
[10] MALTAS E, OZMEN M, YILDIRIMER B, et al. Interaction between ketoconazole and human serum albumin on epoxy modified magnetic nanoparticles for drug delivery[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(10):6522-6528.
[11] VUKI[KG-0.5mm]C[DD(-2.3mm][HT]'[HT5”][DD)]EVI[KG-0.5mm]C[DD(-2.3mm][HT]'[HT5”][DD)] M, TNNESEN H H. Interaction between curcumin and human serum albumin in the presence of excipients and the effect of binding on curcumin photostability[J]. Pharmaceutical Development and Technology, 2016, 21(4):428-436.
[12] LEMMA T, PAWLISZYN J. Human serum albumin interaction with oxaliplatin studied by capillary isoelectric focusing with the whole column imaging detection and spectroscopic method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50(4):570-575.
[13] SEEDHER N, KANOJIA M. Mechanism of interaction of hypoglycemic agents glimepiride and glipizide with human serum albumin[J]. Central European Journal of Chemistry, 2009, 7(1):96-104.
[14] VLASOVA I M, BUKHAROVA E M, KULESHOVA A A, et al. Spectroscopic investigations of interaction of fluorescent nanomarkers of fluorescein family with human serum albumin at different values of pH[J]. Current Applied Physics, 2011, 11(5):1126-1132.
[15] FU J X, GE Y S, JIANG F L, et al. Spectroscopic and molecular modeling studies on the interaction between a fluorine-containing triazole derivative and human serum albumin[J]. Biological Trace Element Research, 2011, 143(1):562-578.
[16] ALI M S, AL-LOHEDAN H A, ATTA A M, et al. Interaction of human serum albumin with silver nanoparticles functionalized with polyvinylthiol[J]. Journal of Molecular Liquids, 2015, 204:248-254.
[17] ZHANG Z, GUO Q, LU Y, et al. Interaction between novel porphyrin-dextran nanoparticles and human serum albumin[J]. Journal of Porphyrins and Phthalocyanines, 2010, 14(3):264-270.
[18] HEMMATEENEJAD B, YOUSEFINEJAD S. Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry[J]. Journal of Molecular Structure, 2013, 1037:317-322.
[19] KABIR M Z, TEE W V, MOHAMAD S B, et al. Interaction of an anticancer drug, gefitinib with human serum albumin:insights from fluorescence spectroscopy and computational modeling analysis[J]. RSC Advances, 2016, 6(94):91756-91767.
[20] GAUDREAU S, NEAULT J F, TAJMIR-RIAHI H A. Interaction of AZT with human serum albumin studied by capillary electrophoresis, FTIR and CD spectroscopic methods[J]. Journal of Biomolecular Structure and Dynamics, 2002, 19(6):1007-1014.
[21] YOUSEFI R, MOHAMMADI R, TAHERI-KAFRANI A, et al. Study of the interaction between two newly synthesized cyclometallated platinum(II)complexes and human serum albumin:spectroscopic characterization and docking simulation[J]. Journal of Luminescence, 2015, 159:139-146.
[1] 胡晓熙,王芸,文丰,廖丹葵,童张法. 全氟两性表面活性剂与蛋白质相互作用研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 105-111.
[2] 闫鹏程, 周孟然, 穆璐, 宫关, 张开远. 基于LIF技术的煤矿水源识别系统应用[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 26-31.
[3] 邹华, 周享春, 孙梅香, 王玉龙. 溴酚蓝与牛血清白蛋白的相互作用研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 82-87.
[4] 梁宏. 脂肪酸调控盐酸金刚烷结合在人血清白蛋白ⅡA亚域[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 159-170.
[5] 彭桂花, 王夏, 何岸梅, 梁振华, 韩小宝. 燃烧合成超细ITO粉体[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发