广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (4): 1-9.doi: 10.16088/j.issn.1001-6600.2017.04.001

• •    下一篇

一种体现心肌细胞传导记忆的元胞自动机模型

张学良,谭惠丽,白克钊,唐国宁,邓敏艺*   

  1. 广西师范大学物理科学与技术学院,广西桂林541004
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 邓敏艺(1973—),女,广西平南人,广西师范大学教授。E-mail:dengminyi@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金 (11365003,11565005,11647309);广西高校科研一般项目(YB2014034)

A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells

ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi*   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 元胞自动机是研究心肌电信号动力学行为的重要辅助工具,但经典Greenberg-Hastings元胞自动机具有恒常的速度分布,不能反映心肌细胞电信号传导速度对历史状态的记忆。本文在Greenberg-Hastings元胞自动机基础上考虑心肌细胞上一个状态周期对心肌组织电信号传导速度的影响,建立了一种体现心肌细胞传导记忆的元胞自动机模型。利用所建立的模型,本文不仅能模拟心肌组织中稳定螺旋波的产生与维持,还再现了螺旋波的多普勒失稳、爱克豪斯失稳以及这2种失稳同时产生的现象,这些螺旋波失稳现象是经典Greenberg-Hastings元胞自动机模型所无法产生的,并对以上现象的产生原因进行了分析。本文的结果为进一步利用元胞自动机方法探讨心肌细胞传导记忆性对螺旋波动力学规律的影响提供了参考。

关键词: 元胞自动机, 传导恢复, 螺旋波, 多普勒失稳, 爱克豪斯失稳

Abstract: Cellular automaton is an important method for studying cardiac signal dynamics, but the cells in traditional Greenberg-Hastings cellular automaton have the constant conduction velocity distribution, which cannot reflect the relation between the cardiac signal conduction velocity and the preceding state period. In this paper, a cellular automaton model connected to the conduction restitution of cardiac cells is established. In this model, the conduction velocity of the electrical cardiac signal depends on the preceding state period of the myocardial cells. With this model, the production and maintenance of stable spiral waves in myocardial tissue are simulated, and the phenomena of the Doppler and Eckhaus instability of spiral waves are exhibited, which can not be produced by the traditional Greenberg-Hastings cellular automaton. The causes of the above phenomena are analyzed in this paper. This work provides an useful guidence for further study of the electrical cardiac signal in the future.

Key words: cellular automaton, conduction restitution, spiral wave, Doppler instability, Eckhaus instability

中图分类号: 

  • O411.3
[1] JAKUBITH S, ROTERMUND H H, ENGEL W, et al. Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence[J].Physical Review Letters, 1990, 65(24):3013-3016.
[2] LIU Guiquan,WU Ningjie,YING Heping. The drift of spirals under competitive illumination in an excitable medium[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9):2398-2401.
[3] MA Jun, ZHANG Aihua, TANG Jun, et al. Collective behaviors of spiral waves in the networks of hodgkin-huxley neurons in presence of channel noise[J].Journal of Biological Systems, 2011, 18(1):243-259.
[4] GLASS L. Dynamics of cardiac arrhythmias[J]. Physics Today, 1996, 49 (8):40-45.
[5] NASH M P, PANFILOV A V. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias[J].Progress in Biophysics and Molecular Biology, 2004, 85(3):501-522.
[6] PETROV V, Qi O, SWINNEY H L. Resonant pattern formation in a chemical system[J].Nature,1997, 388(6643):655-657.
[7] ZHANG Hong, CHEN Jiangxing, LI Youquan, et al. Control of spiral breakup by an alternating advective field[J].Journal of Chemical Physics, 2006, 125(20):204503.
[8] LIU Guiquan, YING Heping, LUO Honglei, et al. Suppression of spiral breakup in excitable media by local periodic forcing[J]. International Journal of Bifurcation and Chaos, 2017, 26(14):1650236.
[9] 马军,应和平,李延龙,等. 混沌信号驱动实现螺旋波和时空混沌抑制[J].郑州大学学报(理学版), 2006, 38(1):45-49.
[10] WEISS J N, QU Zhilin, CHEN Pengsheng, et al. The dynamics of cardiac fibrillation[J].Circulation,2005, 112(8):1232-1240.
[11] ZHENG Yi, WEI Daming, ZHU xin, et al. Ventricular fibrillation mechanisms and cardiac restitutions: an investigation by simulation study on whole-heart model[J]. Computers in Biology and Medicine, 2015, 63:261-268.
[12] LOMBARDO D M, FENTON F H, NARAYAN S M, et al. Comparison of detailed and simplified models of human atrial myocytes to recapitulate patient specific properties[J].Plos Computational Biology, 2016, 12(8):e1005060.
[13] IDEKER R E, ROGERS J M, GRAY R A. Steepness of the restitution curve: a slippery slope?[J].Journal of Cardiovascular Electrophysiology, 2002, 13(11):1173-1175.
[14] 刘慕仁,邓敏艺,孔令江. 舆论传播的元胞自动机模型(Ⅰ)[J].广西师范大学学报(自然科学版), 2002, 20(2):1-3.
[15] 邝华,孔令江,刘慕仁. VDR混合交通流模型的研究[J].四川师范大学学报(自然科学版), 2007, 30(5):619 -622.
[16] 覃松,邓敏艺,孔令江. 融资融券影响的元胞自动机股票市场模拟研究[J].广西师范大学学报(自然科学版), 2011, 29(4):12-15.
[17] GREENBERG J M, HASTINGS S P. Spatial patterns for discrete models of diffusion in excitable media[J].Siam Journal on Applied Mathematics, 1978, 34(3):515-523.
[18] 张立升,邓敏艺,孔令江,等.用元胞自动机模型研究二维激发介质中的行波[J].广西师范大学学报(自然科学版),2009,27(2):9-12.
[19] DENG Minyi, CHEN Xiqiong, TANG Guoning. The effect of cellular aging on the dynamics of spiral waves[J].Chinese Physics B, 2014, 23(12): 120503.
[20] DENG Minyi, ZHANG Xueliang, DAI Jingyu. Effects of abnormal excitation on the dynamics of spiral waves[J].Chinese Physics B, 2016, 25(1): 010504.
[21] BUB G, SHRIER A, GLASS L. Spiral wave generation in heterogeneous excitable media[J].Physical Review Letters,2002, 88(5): 058101.
[22] 戴静娱,张学良,邓敏艺,等.位置扰动对激发介质中螺旋波动力学行为的影响[J].广西师范大学学报(自然科学版),2016,34(2):8-16.
[23] ITO H, GLASS L. Spiral breakup in a new model of discrete excitable media[J].Physical Review Letters, 1991,66(5):671-674.
[24] 欧阳颀. 反应扩散系统中螺旋波的失稳[J].物理,2001,30(1): 30-36.
[25] ZHANG Lisheng, DENG Minyi, KONG Lingjiang, et al. Cellular automaton simulations for target waves in excitable media[J].Communifications in Theoritical Physics, 2010, 53:171-174.
[1] 邝先验, 陈自如. 考虑礼让行人的交叉口机非混合交通流模型[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 1-15.
[2] 黄雯, 谭惠丽. 心脏记忆对螺旋波动力学的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 1-8.
[3] 戴静娱, 张学良, 邓敏艺, 谭惠丽. 位置扰动对激发介质中螺旋波动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 8-14.
[4] 蔡美静, 邝华, 白克钊, 陈若航. 电影厅内部布局及出口位置对疏散效率的影响[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 1-6.
[5] 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7-14.
[6] 师伟展, 邝华, 白克钊, 孔令江. 固执者对舆论传播动力学的影响研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 22-26.
[7] 许钢, 刘海燕, 张超英, 梁振燕. 基于元胞自动机的建构主义理论应用模拟[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 7-12.
[8] 邓敏艺, 谭惠丽. 一个双变量元胞自动机模型的定性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 1-6.
[9] 余艳, 白克钊, 孔令江. 行人与机动车相互干扰的元胞自动机模拟研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 6-10.
[10] 翟莹, 易忠, 谢正卫, 邓培民, 李王月. 一类特殊规则的二维混合元胞自动机的GOE问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 37-43.
[11] 覃松, 邓敏艺, 孔令江. 融资融券影响的元胞自动机股票市场模拟研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 12-15.
[12] 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4.
[13] 陈永淇, 白克钊, 邝华, 孔令江, 刘慕仁. 教室内布局对人员疏散影响的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发