广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (2): 118-127.doi: 10.16088/j.issn.1001-6600.2018.02.017

• • 上一篇    下一篇

2007—2016年广西植被覆盖时空分布特征及其驱动因素

廖春贵1,2,3,陈月连3,熊小菊1,2,3,胡宝清1,2,3*   

  1. 1.广西师范学院北部湾环境演变与资源利用教育部重点实验室,广西南宁 530001;
    2. 广西师范学院广西地表过程与智能模拟重点实验室,广西南宁 530001;
    3. 广西师范学院地理科学与规划学院,广西南宁530001
  • 收稿日期:2017-07-16 出版日期:2018-05-10 发布日期:2018-07-18
  • 通讯作者: 胡宝清(1966—),男,江西临川人,广西师范学院教授,博士。E-mail:hbq1230@gxtc.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFC0502401);国家自然科学基金(21661021);广西自然科学基金创新团队项目(2016JJF15001);广西师范学院大学生创新创业大赛区级项目(201710603260)

Changes of Vegetation NDVI and Its Driving Factors from 2007 to 2016 in Guangxi,China

LIAO Chungui1,2,3, CHEN Yuelian3, XIONG Xiaoju1,2,3, HU Baoqing1,2,3*   

  1. 1. Key Laboratory of Environment Change and Resources Use in Beibu Gulf Guangxi Teachers Education University, Ministry of Education, Nanning Guangxi 530001,China;
    2. Guangxi Key Laboratory of Earth Surface Processes and Intelligent SimulationGuangxi Teachers Education University, Nanning Guangxi 530001,China;
    3. School of Geography and Planning,Guangxi Teachers Education University, Nanning Guangxi 530001,China
  • Received:2017-07-16 Online:2018-05-10 Published:2018-07-18

摘要: 为探索广西植被变化的规律及主导因素,本文利用植被归一化(NDVI)数据、气象数据和DEM数据,通过一元线性回归方法、变异系数以及相关分析法,对比分析不同植被类型、土壤类型、海拔高度的植被NDVI值的变化。研究表明:(1)广西植被覆盖状况良好,总体呈上升趋势。草丛、阔叶林、针叶林的植被覆盖高。(2)广西58.76% 区域的植被处于非常稳定状态,37.84%区域的植被处于稳定状态,1.07%区域的植被变异剧烈,即大部分地区植被呈稳定状态,极少数地区变异剧烈。阔叶林处于稳定状态,变化较小。(3)年平均NDVI值与年降水、气温总体呈负相关。(4)针叶林、阔叶林、灌丛和草丛的植被覆盖呈轻度增加。赤红壤、红壤、黄壤、石灰土、粗骨土地区的植被覆盖呈增加趋势,而砖红壤地区的呈下降趋势。(5)NDVI值随着海拔高度的变化比较明显,总体变化呈“增加—下降—增加”的趋势。

关键词: 植被覆盖, 变异系数, 土壤类型, 时空变化特征

Abstract: To explore general regularity of vegetation cover change in Guangxi and the leading influencing factors, the vegetation change trend from 2007 to 2016 was analyzed based on the vegetation normalized index data, meteorological data and digital elevation model (DEM) data using a linear regression method and coefficient of variation and correlation analysis. The results revealed that: (1) the vegetation coverage in Guangxi was in good condition with a growing tendency, and the perspective of vegetation, grassland, broadleaf forests, coniferous forests of NDVI is high. (2) most of the vegetation covers in Guangxi are stable as revealed by the data of 58.76% in an extremely stable state and 37.84% in a stable state with only 1.07% in a state underwent dramatic variation. Broadleaf forests are in a stable state with only a small change.(3)The annual average NDVI presented a negative correlation with the annual precipitation and the annual temperature.(4)Broadleaf forests, Coniferous forests, Grassland, Shrub showed a slightly increasing trend. And the vegetation cover area on Latosolic red earth, Red earth, Yellow earths, Limestone soils, Skeletal soil showed an increasing trend, but the Latosol vegetation cover area showed a declining trend.(5)NDVI change apparently with the change of altitude with an overall trend of increasing-declining-increasing.

Key words: vegetation cover, coefficient of variation, agrotype, characteristics on spatiotemporal variations

中图分类号: 

  • X171.4
[1] PIAO S L,WANG X H,CIAIS P,et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J].Global Change Biology,2011,17(10):3228-3239.
[2] PENG J,LIU ZH,LIU Y H,et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J].Ecological Indicators,2012,14(1):28-39.
[3] MYNENI R B,KEELING C D,TUCKER C J,et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J].Nature,1997,386(6626):698-702.
[4] GOETZ S J,BUNN A G,FISKE G J,et al. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13521-1352.
[5] PENG S S,CHEN A P,XU L,et al. Recent change of vegetation growth trend in China[J]. Environmental Research Letters,2011,6(4):4027-4039.
[6] NEMANI R R,KEELING C D,HASHIMOT H,et al. Climate-Driven increased in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300(5625):1560-1563.
[7] 贾坤,姚云军,魏香琴,等.植被覆盖度遥感估算研究进展[J].地球科学进展,2013,28(7):774-782.
[8] WANG J,LI B,YU W. Analysis of vegetation trend and their causes during recent 30 years in Inner Mongolia Autonomous Region[J].Journal of Arid Land Resources and Environment,2012,26(2):1321-1337.
[9] YIN H,LI Z,WANG Y,et al. Assessment of desertification using time series analysis of hyper-temporal vegetation indicator in Inner Mongolia[J].Acta Geographica Sinica,2011,66(5):653-661.
[10] SONG F,XING K, LIU Y,et al. Monitoring and assessment of vegetation variation in Northern Shaanxi based on MODIS / NDVI[J].Acta Ecologica Sinica,2011,31(2):354-363.
[11] 李超,赵淑清,方精云. 1975—2014年福建省植被覆盖变化及其驱动因素[J].植物生态学报,2017, 41(2):157-164.
[12] 杜加强,贾尔恒·阿哈提,赵晨曦,等.1982-2012年新疆植被NDVI的动态变化及其对气候变化和人类活动的响应[J].应用生态学报,2015, 26(12):3567-3578.
[13] 韩涛,王大为. 2000—2014年石羊河流域植被覆盖变化研究[J].中国农学通报,2017, 33(13):66-74.
[14] 刘哲,邱炳文,王壮壮,等.2001—2014年间黄土高原植被覆盖状态时空演变分析[J].国土资源遥感,2017,29(1):192-198.
[15] 李燕丽,潘贤章,周睿,等.长期土壤肥力因子变化及其与植被指数耦合关系[J].生态学杂志,2013,32(3):536-541.
[16] 赵其国,黄国勤,马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报,2013,33(24):7615-7622.
[17] 李燕丽,潘贤章,王昌昆.2000—2011年广西植被净初级生产力时空分布特征及其驱动因素[J].生态学报,2014,34(18):5220-5228.
[18] 王永锋,靖娟利.基于SPOT NDVI的广西植被变化趋势分析[J].桂林理工大学学报,2015, 35(2):335-339.
[19] 韦振锋,任志远,张翀.近12年广西植被覆盖与降水和气温的时空响应特征[J].水土保持研究,2013, 20(5):33-38,44.
[20] 喻素芳,佘光辉,罗叶红,等.基于MODIS-NDVI数据广西植被覆盖变化特征分析[J].湖北农业科学,2015,54(2):321-325.
[21] 荣检,胡宝清,闫妍.广西西江流域植被净初级生产力时空分布特征及其影响因素[J].生态学杂志,2017,36(4):1020-1028.
[22] 况雪源,苏志,涂方旭.广西气候区划[J].广西科学,2007,14(3):278-283.
[23] 赵安周,刘宪锋,朱秀芳,等.2000—2014年黄土高原植被覆盖时空变化特征及其归因[J].中国环境科学,2016,36(5):1568-1578.
[24] 戴声佩,张勃,王海军,等.基于SPOT NDVI 的祁连山草地植被覆盖时空变化趋势分析[J].地理科学进展,2010,29(9):1075-1080.
[25] 张仁平,冯琦胜,郭靖,等.2000—2012年中国北方草地NDVI和气候因子时空变化[J].中国沙漠,2015, 35(5):1403-1412.
[26] 徐建华.计量地理学[M].北京:高等教育出版社,2006.
[27] 穆少杰,李建龙,周伟,等.2001—2010年内蒙古植被净初级生产力的时空格局及其与气候的关系[J].生态学报,2013,33(12):3752-3764.
[28] 许红梅,高清竹,黄永梅,等.气候变化对黄土丘陵沟壑区植被净第一性生产力的影响模拟[J].生态学报,2006,26(9):2938-2947.
[29] 赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应[J].生态学报,2008,28(1):92-102.
[30] 施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3): 219-226.
[31] 张元栋,尚晓鹏,杜芬玲,等.宁夏植被动态变化及其对降水的响应[J].西安科技大学学报,2017,37(1):84-89.
[32] 罗敏,古丽·加帕尔,郭浩,等.2000—2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析[J].自然资源学报,2017,32(1):50-63.
[33] 武正丽,贾文雄,赵珍,等.2000—2012年祁连山植被覆盖变化及其与气候因子的相关性[J].干旱区地理,2015,38(6):1241-1252.
[34] 马龙,王静茹,刘廷玺,等.2000—2012年科尔沁沙地植被与气候因子间的响应关系[J].农业机械学报,2016,47(4):162-172.
[35] 李净,刘红兵,李龙,等.基于多源遥感数据集的近30a西北地区植被动态变化研究[J].干旱区地理,2016,39(2): 387-394.
[36] 徐浩杰,杨太保. 柴达木盆地植被生长时空变化特征及其对气候要素的响应[J].自然资源学报,2014,29(3):398-409.
[37] 郭笑怡,刘德赢,张洪岩.大兴安岭NDVI时间序列的长程相关性特征分析[J].地球信息科学学报,2013, 15(1):152-158.
[38] GARCIA-AGUIRRE M C,ORTIZ M A,ZAMORANO J J,et al.Vegetation and landform relationships at Ajusco volcano Mexico,using a geographic information system (GIS) [J].Forest Ecology and Management,2007,239(1/2/3):1-12.
[39] GARC A-ROMERO A, ACEVES-QUESADA J F,ARREDONDO-LE N C. Landform instability and land-use dynamics in tropical high mountains,Central Mexico[J].Journal of Mountain Science,2012,9(3):414-430.
[40] 梁士楚,田华丽,田丰,等.漓江湿地植被类型及其分布特点[J].广西师范大学学报(自然科学版),2015,33(4):115-119.
[41] 梁保平,李艺,刘庆业.典型植被指数与地表温度空间特征分析:以桂林市为例[J].广西师范大学学报(自然科学版),2012,30(2):132-137.
[42] 刘序,徐剑波,胡月明,等.基于DEM的广东省赤红壤全磷与地形因子相关分析[J].土壤,2009,41(6):1014-1017.
[43] 杨昕,汤国安,刘学军,等.数字地形分析的理论、方法与应用[J].地理学报,2009,64(9):1058-1070.
[1] 熊小菊,廖春贵,胡宝清,陈月连,朱海珍. 基于MODIS的广西植被NPP时空分异及驱动力分析[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 187-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发