广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 47-60.doi: 10.16088/j.issn.1001-6600.2023021503

• 研究论文 • 上一篇    下一篇

5G基站与光热电站电-热耦合下的综合能源系统低碳优化调度

赵迪, 文中*, 吴倩, 闫文文, 覃治银, 王博宇   

  1. 三峡大学电气与新能源学院,湖北宜昌 443002
  • 收稿日期:2023-02-15 修回日期:2023-03-13 出版日期:2023-07-25 发布日期:2023-09-06
  • 通讯作者: 文中(1968—),男,湖北宜昌人,三峡大学副教授。E-mail:812322399@qq.com
  • 基金资助:
    国家自然科学基金(51607105)

Low-Carbon Optimal Scheduling of Integrated Energy System under Electro-Thermal Coupling of 5G Base Station and Concentrated Solar Power Plant

ZHAO Di, WEN Zhong*, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu   

  1. School of Electrical and New Energy, China Three Gorges University,Yichang Hubei 443002,China
  • Received:2023-02-15 Revised:2023-03-13 Online:2023-07-25 Published:2023-09-06

摘要: 在网络强国战略和“双碳”目标双重背景下,为解决5G移动网络密集化程度和数据量的增加所带来的供电压力及节能减排问题,提出5G基站与综合能源系统(integrated energy system,IES)协同下的低碳优化运行策略。首先,为优化基站能量管理,加强基站与IES互动,引入基站休眠机制和基站储能电池需求响应模型,并对比其在不同时空下的运行效果。其次,为促进基站与IES电-热能间的高效耦合利用,建立5G基站余热模型,并与IES中光热电站进行耦合,充分发挥二者的供能潜力。最后,为衡量基站加入所带来的低碳效益,将奖惩阶梯碳交易机制引入系统决策中,构建5G基站与IES协同运行的三阶段优化调度模型,并在不同运行场景下,对优化模型进行仿真分析。结果表明,经协同调度后IES和5G基站的运行成本分别下降了20.3%和22.5%;IES的碳排放量下降了24.2%。

关键词: 5G基站, 光热电站, 综合能源系统, 余热利用, 基站储能

Abstract: Under the dual background of network power strategy and "double carbon" goal, in order to solve the power supply pressure and energy saving and emission reduction problems caused by the increase of density and data volume of 5G mobile network, a low-carbon optimization operation strategy based on the collaboration of 5G base stations (BSs) and integrated energy system (IES) is proposed. Firstly, in order to optimize the energy management of the BSs and strengthen the interaction between the BSs and IES, the BSs sleep mechanism and the demand response model of the BSs energy storage battery are introduced, and their operation effects in different time and space are compared. Secondly, in order to promote the efficient coupling utilization between the BSs and IES electric-thermal energy, a 5G BSs waste heat model is established, which is coupled with the photothermal power station in IES to give full play to the energy supply potential of the two. Finally, in order to measure the low-carbon benefits brought by the addition of the BSs, the reward and punishment ladder carbon trading mechanism is introduced into the system decision-making, and the three-stage optimization scheduling model of the cooperative operation of 5G BSs and IES is constructed. The optimization model is simulated and analyzed under different operation scenarios. The results show that the operating costs of IES and 5G BSs decreased by 20.3% and 22.5% respectively after collaborative scheduling, and the carbon emissions of IES decreased by 24.2%.

Key words: 5G base station, CSP plant, integrated energy system, waste heat utilization, base station energy storage

中图分类号:  TK01; TM73

[1] 周孝信,陈树勇,鲁宗相,等. 能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904. DOI: 10.13334/j.0258-8013.pcsee.180067.
[2] 杜尔顺,张宁,康重庆,等. 太阳能光热发电并网运行及优化规划研究综述与展望[J].中国电机工程学报,2016,36(21):5765-5775,6019. DOI: 10.13334/j.0258-8013.pcsee.161251.
[3] 刘新元,程雪婷,薄利明,等. 考虑源荷协调的含储热光热电站和风电系统的日前-日内调度策略[J].中国电力,2021,54(8):144-153. DOI: 10.11930/j.issn.1004-9649.202004040.
[4] 杨勇,郭苏,刘群明,等. 风电–CSP联合发电系统优化运行研究[J].中国电机工程学报,2018,38(S1):151-157. DOI: 10.13334/j.0258-8013.pcsee.180956.
[5] DOMÍNGUEZ R, CONEJO A J, CARRIÓN M. Operation of a fully renewable electric energy system with CSP plants[J]. Applied Energy, 2014, 119: 417-430. DOI: 10.1016/j.apenergy.2014.01.014.
[6] SANTOS-ALAMILLOS F J, POZO-VÁZQUEZ D, RUIZ-ARIAS J A, et al. Combining wind farms with concentrating solar plants to provide stable renewable power[J]. Renewable Energy, 2015, 76: 539-550. DOI: 10.1016/j.renene.2014.11.055.
[7] 杨宏基,周明,武昭原,等. 含光热电站的电-热能源系统优化运行机制[J].电网技术,2021,46(1):175-184. DOI: 10.13335/j.1000-3673.pst.2021.0825.
[8] 郑连华,文中,邱智武,等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL].电测与仪表:1-9[2022-10-30].http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html.
[9] 新华网,中国电子信息产业发展研究院.5G融合应用发展白皮书(2020)[EB/OL].(2020-12-04)[2022-10-25].https://baike.baidu.com/item/5G融合应用发展白皮书%282020%29/55269777?fr=aladdin.
[10] 曾博,穆宏伟,董厚琦,等.考虑5G基站低碳赋能的主动配电网优化运行[J].上海交通大学学报,2022,56(3):279-292. DOI: 10.16183/j.cnki.jsjtu.2021.367.
[11] 李达. 5G密集异构网络下的基站休眠技术研究[D].北京:北京邮电大学,2018.
[12] ABROL A, JHA R K. Power optimization in 5G networks: a step towards GrEEn communication[J]. IEEE Access, 2016, 4: 1355-1374. DOI: 10.1109/ACCESS.2016.2549641.
[13] LI Y N R, CHEN M Z, XU J, et al. Power saving techniques for 5G and beyond[J]. IEEE Access, 2020, 8: 108675-108690. DOI: 10.1109/ACCESS.2020.3001180.
[14] 周宸宇,冯成,王毅. 基于移动用户接入控制的5G通信基站需求响应[J].中国电机工程学报,2021,41(16):5452-5461. DOI: 10.13334/j.0258-8013.pcsee.210369.
[15] RENGA D, AL HAJ HASSAN H, MEO M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 868-880. DOI: 10.1109/TGCN.2018.2821097.
[16] AL HAJ HASSAN H, RENGA D, MEO M, et al. A novel energy model for renewable energy-enabled cellular networks providing ancillary services to the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 381-396. DOI: 10.1109/TGCN.2019.2893203.
[17] NÖRTERSHÄUSER D, LE MASSON S, VOLKOV T, et al. Experimental liquid cooled base station[C]//2016 IEEE International Telecommunications Energy Conference (INTELEC). Piscataway, NJ: IEEE, 2016: 1-7. DOI: 10.1109/INTLEC.2016.7749130.
[18] HUANG P, COPERTARO B, ZHANG X X, et al. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. DOI: 10.1016/j.apenergy.2019.114109.
[19] Nokia. Nokia and KDDI trial Japan’s first liquid cooling innovation to promote sustainability[EB/OL]. (2021-06-18)[2022-10-24]. https://www.nokia.com/about-us/news/releases/2021/06/18/nokia-and-kddi-trial-japans-first-liquid-cooling-innovation-to-promote-sustainability/.
[20] 孙名轶,赵霞,武桢寓,等. 5G基站与区域综合能源系统的水-能耦合与协同[J/OL].中国电机工程学报:1-14[2022-10-30].http://kns.cnki.net/kcms/detail/11.2107.TM.20220618.1706.009.html.
[21] 雍培,张宁,慈松,等. 5G通信基站参与需求响应:关键技术与前景展望[J].中国电机工程学报,2021,41(16):5540-5551. DOI: 10.13334/j.0258-8013.pcsee.210183.
[22] 朱思嘉. 计及5G基站的电动公交车光储充电站能量管理[D].北京:华北电力大学(北京),2021.
[23] 张勇,范斯达,高海荣,等.融合柔性负荷和碳交易机制的矿山综合能源系统运行优化[J/OL].电力系统及其自动化学报:1-12[2022-10-31].https://doi.org/10.19635/j.cnki.csu-epsa.001100. DOI: 10.19635/j.cnki.csu-epsa.001100.
[24] 陈锦鹏,胡志坚,陈嘉滨,等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].高电压技术,2021,47(9):3094-3104. DOI: 10.13336/j.1003-6520.hve.20211094.
[25] OIKONOMOU K, PARVANIA M. Optimal coordination of water distribution energy flexibility with power systems operation[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1101-1110. DOI: 10.1109/TSG.2018.2824308.
[26] 王晓云,黄宇红,崔春风,等. C-RAN:面向绿色的未来无线接入网演进[J].中国通信,2010,7(3):107-112.
[1] 粟世玮, 郝翊彤, 宋玉娇, 张磊, 智李, 郝翊帆. 含风电-氢能-电转气的园区综合能源系统优化调度[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 王党树, 仪家安, 董振, 杨亚强, 邓翾. 单周期控制的带纹波抑制单元无桥Boost PFC变换器研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 47 -57 .
[7] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[10] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162 -172 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发