|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 47-60.doi: 10.16088/j.issn.1001-6600.2023021503
赵迪, 文中*, 吴倩, 闫文文, 覃治银, 王博宇
ZHAO Di, WEN Zhong*, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu
摘要: 在网络强国战略和“双碳”目标双重背景下,为解决5G移动网络密集化程度和数据量的增加所带来的供电压力及节能减排问题,提出5G基站与综合能源系统(integrated energy system,IES)协同下的低碳优化运行策略。首先,为优化基站能量管理,加强基站与IES互动,引入基站休眠机制和基站储能电池需求响应模型,并对比其在不同时空下的运行效果。其次,为促进基站与IES电-热能间的高效耦合利用,建立5G基站余热模型,并与IES中光热电站进行耦合,充分发挥二者的供能潜力。最后,为衡量基站加入所带来的低碳效益,将奖惩阶梯碳交易机制引入系统决策中,构建5G基站与IES协同运行的三阶段优化调度模型,并在不同运行场景下,对优化模型进行仿真分析。结果表明,经协同调度后IES和5G基站的运行成本分别下降了20.3%和22.5%;IES的碳排放量下降了24.2%。
中图分类号: TK01; TM73
[1] 周孝信,陈树勇,鲁宗相,等. 能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904. DOI: 10.13334/j.0258-8013.pcsee.180067. [2] 杜尔顺,张宁,康重庆,等. 太阳能光热发电并网运行及优化规划研究综述与展望[J].中国电机工程学报,2016,36(21):5765-5775,6019. DOI: 10.13334/j.0258-8013.pcsee.161251. [3] 刘新元,程雪婷,薄利明,等. 考虑源荷协调的含储热光热电站和风电系统的日前-日内调度策略[J].中国电力,2021,54(8):144-153. DOI: 10.11930/j.issn.1004-9649.202004040. [4] 杨勇,郭苏,刘群明,等. 风电–CSP联合发电系统优化运行研究[J].中国电机工程学报,2018,38(S1):151-157. DOI: 10.13334/j.0258-8013.pcsee.180956. [5] DOMÍNGUEZ R, CONEJO A J, CARRIÓN M. Operation of a fully renewable electric energy system with CSP plants[J]. Applied Energy, 2014, 119: 417-430. DOI: 10.1016/j.apenergy.2014.01.014. [6] SANTOS-ALAMILLOS F J, POZO-VÁZQUEZ D, RUIZ-ARIAS J A, et al. Combining wind farms with concentrating solar plants to provide stable renewable power[J]. Renewable Energy, 2015, 76: 539-550. DOI: 10.1016/j.renene.2014.11.055. [7] 杨宏基,周明,武昭原,等. 含光热电站的电-热能源系统优化运行机制[J].电网技术,2021,46(1):175-184. DOI: 10.13335/j.1000-3673.pst.2021.0825. [8] 郑连华,文中,邱智武,等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL].电测与仪表:1-9[2022-10-30].http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html. [9] 新华网,中国电子信息产业发展研究院.5G融合应用发展白皮书(2020)[EB/OL].(2020-12-04)[2022-10-25].https://baike.baidu.com/item/5G融合应用发展白皮书%282020%29/55269777?fr=aladdin. [10] 曾博,穆宏伟,董厚琦,等.考虑5G基站低碳赋能的主动配电网优化运行[J].上海交通大学学报,2022,56(3):279-292. DOI: 10.16183/j.cnki.jsjtu.2021.367. [11] 李达. 5G密集异构网络下的基站休眠技术研究[D].北京:北京邮电大学,2018. [12] ABROL A, JHA R K. Power optimization in 5G networks: a step towards GrEEn communication[J]. IEEE Access, 2016, 4: 1355-1374. DOI: 10.1109/ACCESS.2016.2549641. [13] LI Y N R, CHEN M Z, XU J, et al. Power saving techniques for 5G and beyond[J]. IEEE Access, 2020, 8: 108675-108690. DOI: 10.1109/ACCESS.2020.3001180. [14] 周宸宇,冯成,王毅. 基于移动用户接入控制的5G通信基站需求响应[J].中国电机工程学报,2021,41(16):5452-5461. DOI: 10.13334/j.0258-8013.pcsee.210369. [15] RENGA D, AL HAJ HASSAN H, MEO M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 868-880. DOI: 10.1109/TGCN.2018.2821097. [16] AL HAJ HASSAN H, RENGA D, MEO M, et al. A novel energy model for renewable energy-enabled cellular networks providing ancillary services to the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 381-396. DOI: 10.1109/TGCN.2019.2893203. [17] NÖRTERSHÄUSER D, LE MASSON S, VOLKOV T, et al. Experimental liquid cooled base station[C]//2016 IEEE International Telecommunications Energy Conference (INTELEC). Piscataway, NJ: IEEE, 2016: 1-7. DOI: 10.1109/INTLEC.2016.7749130. [18] HUANG P, COPERTARO B, ZHANG X X, et al. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. DOI: 10.1016/j.apenergy.2019.114109. [19] Nokia. Nokia and KDDI trial Japan’s first liquid cooling innovation to promote sustainability[EB/OL]. (2021-06-18)[2022-10-24]. https://www.nokia.com/about-us/news/releases/2021/06/18/nokia-and-kddi-trial-japans-first-liquid-cooling-innovation-to-promote-sustainability/. [20] 孙名轶,赵霞,武桢寓,等. 5G基站与区域综合能源系统的水-能耦合与协同[J/OL].中国电机工程学报:1-14[2022-10-30].http://kns.cnki.net/kcms/detail/11.2107.TM.20220618.1706.009.html. [21] 雍培,张宁,慈松,等. 5G通信基站参与需求响应:关键技术与前景展望[J].中国电机工程学报,2021,41(16):5540-5551. DOI: 10.13334/j.0258-8013.pcsee.210183. [22] 朱思嘉. 计及5G基站的电动公交车光储充电站能量管理[D].北京:华北电力大学(北京),2021. [23] 张勇,范斯达,高海荣,等.融合柔性负荷和碳交易机制的矿山综合能源系统运行优化[J/OL].电力系统及其自动化学报:1-12[2022-10-31].https://doi.org/10.19635/j.cnki.csu-epsa.001100. DOI: 10.19635/j.cnki.csu-epsa.001100. [24] 陈锦鹏,胡志坚,陈嘉滨,等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].高电压技术,2021,47(9):3094-3104. DOI: 10.13336/j.1003-6520.hve.20211094. [25] OIKONOMOU K, PARVANIA M. Optimal coordination of water distribution energy flexibility with power systems operation[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1101-1110. DOI: 10.1109/TSG.2018.2824308. [26] 王晓云,黄宇红,崔春风,等. C-RAN:面向绿色的未来无线接入网演进[J].中国通信,2010,7(3):107-112. |
[1] | 粟世玮, 郝翊彤, 宋玉娇, 张磊, 智李, 郝翊帆. 含风电-氢能-电转气的园区综合能源系统优化调度[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 48-57. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |