广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 98-108.doi: 10.16088/j.issn.1001-6600.2021122104

• 研究论文 • 上一篇    下一篇

一种基于多策略的改进黏菌算法

王喜敏, 袁杰*, 寇巧媛   

  1. 新疆大学电气工程学院,新疆乌鲁木齐830017
  • 收稿日期:2021-12-21 修回日期:2022-03-09 出版日期:2022-11-25 发布日期:2023-01-17
  • 通讯作者: 袁杰(1975—), 男, 重庆人, 新疆大学教授。E-mail:yuanjie222@126.com
  • 基金资助:
    国家自然科学基金(61863033, 62073227); 新疆维吾尔自治区天山青年计划优秀青年人才培养项目(2019Q018); 新疆维吾尔自治区研究生创新项目(XJ2021G061)

An Improved Slime Mould Algorithm Based on Multi-Strategy

WANG Ximin, YUAN Jie*, KOU Qiaoyuan   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2021-12-21 Revised:2022-03-09 Online:2022-11-25 Published:2023-01-17

摘要: 针对黏菌算法(slime mould algorithm, SMA)搜索效率低和陷入局部最优的问题,本文提出一种多策略改进黏菌算法。首先,通过Tent映射反向学习策略求得较优种群作为初始种群,提高算法收敛速度;其次,黏菌通过自适应权值策略和扰动策略更新位置,调整算法勘探能力和开发能力,避免陷入早熟并提高收敛速度;最后,与PSO、WOA、GWO、SMA等4种算法和相关改进SMA算法相比,对CEC测试函数的寻优结果表明:本文改进算法的搜索效率和避免陷入局部最优能力较强,算法能在较短时间内找到全局最优值,对测试函数的收敛速度和收敛精度均有不同程度提高。

关键词: Tent映射, 反向学习策略, 自适应权值策略, 扰动策略, 黏菌算法

Abstract: Aiming at the problem of low search efficiency and local optimum of Slime Mould Algorithm (SMA), an improved multi-strategy Slime Mould Algorithm is proposed. Firstly, the optimal population is obtained by Tent mapping reverse learning strategy as the initial population to improve the convergence speed of the algorithm. Secondly, slime molds updates location through adaptive weight strategy and disturbance strategy, adjusts the exploration and development ability of the algorithm, avoids falling into premature, and improves the convergence speed. Finally, compared with four classical algorithms including PSO, WOA, GWO, SMA and a related improved SMA algorithm, CEC test function is tested. The optimization results show that the improved algorithm has strong search efficiency and ability to avoid falling into local optimum. The algorithm can find the global optimal value in a short period of time, which are more effective and can improves the convergence speed and convergence accuracy of the test function to some degrees.

Key words: Tent map, reverse learning strategy, adaptive weight strategy, perturbation strategy, slime molds algorithm

中图分类号: 

  • TP18
[1] LIN L, GEN M. Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation[J]. Soft Computing, 2009, 13(2): 157-168. DOI: 10.1007/s00500-008-0303-2.
[2] 王国宇, 黄植功, 戴明. 基于改进粒子群算法的无刷电机模糊控制研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 21-27. DOI: 10.16088/j.issn.1001-6600.2016.02.004.
[3] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. DOI: 10.16088/j.issn.1001-6600.2020093002.
[4] 富立琪,王华倩,乔学工.基于k-means分簇和灰狼优化的无线传感网络路由算法[J].电子设计工程,2021,29(23):1-6.DOI:10.14022/j.issn1674-6236.2021.23.001.
[5] 刘景森, 郑智远, 李煜. 一种交互演化改进鲸鱼算法及其收敛性分析[J/OL]. 控制与决策:1-9[2021-12-21]. https://doi.org/10.13195/j.kzyjc.2021.0807.
[6] 许伦辉, 陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 1-8. DOI: 10.16088/j.issn.1001-6600.2019.02.001.
[7] 雷蕾,陈宏滨.基于萤火虫算法的无线可充电传感器网络的充电策略[J].桂林电子科技大学学报,2021,41(6):477-483.DOI:10.16725/j.cnki.cn45-1351/tn.2021.06.012.
[8] 许伦辉, 尹诗德, 刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1-7. DOI: 10.16088/j.issn.1001-6600.2018.02.001.
[9] LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323. DOI: 10.1016/j.future.2020.03.055.
[10] CHEN H L, ZANG Q, LUO J, et al. An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine[J]. Applied Soft Computing, 2019, 86(11):105884. DOI: 10.1016/j.asoc.2019.105884.
[11] 龙洋, 苏义鑫, 廉城, 等. 混合细菌觅食算法求解无人艇路径规划问题[J]. 华中科技大学学报(自然科学版), 2022, 50(3): 68-73. DOI: 10.13245/j.hust.220313.
[12] MOSTAFA M, REZK H, ALY M, et al. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100849. DOI: 10.1016/j.seta.2020.100849.
[13] LIU Y, HEIDARI A A, YE X J, et al. Boosting slime mould algorithm for parameter identification of photovoltaic models[J]. Energy, 2021, 234: 121164. DOI: 10.1016/j.energy.2021.121164.
[14] EKINCI S, IZCI D, ZEYNELGIL H L, et al. An application of slime mould algorithm for optimizing parameters of power system stabilizer[C]// 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). Piscataway, NJ: IEEE, 2020: 530-534. DOI: 10.1109/ISMSIT50672.2020.9254597.
[15] AGARWAL D, BHARTI P S. Implementing modified swarm intelligence algorithm based on slime moulds for path planning and obstacle avoidance problem in mobile robots[J]. Applied Soft Computing, 2021, 107: 107372. DOI: 10.1016/j.asoc.2021.107372.
[16] HASSAN M H, KAMEL S, ABUALIGAH L, et al. Development and application of slime mould algorithm for optimal economic emission dispatch[J]. Expert Systems with Applications, 2021, 182: 115205. DOI: 10.1016/j.eswa.2021.115205.
[17] 翟青海,谢晓兰.混合云环境下考虑工作流的任务调度策略[J].桂林理工大学学报,2021,41(4):891-896. DOI: 10.3969/j.issn.1674-9057.2021.04.024.
[18] LIU M J, LI Y H, HUO Q, et al. A two-way parallel slime mold algorithm by flow and distance for the travelling salesman problem[J]. Applied Sciences, 2020, 10(18): 6180. DOI: 10.3390/app10186180.
[19] 肖亚宁,孙雪,李三平, 等. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 21(28): 12130-12138. DOI: 10.3969/j.issn.1671-1815.2021.28.028.
[20] CHEN Z Y, LIU W B. An efficient parameter adaptive support vector regression using K-means clustering and chaotic slime mould algorithm[J]. IEEE Access, 2020, 8:156851-156862. DOI:10.1109/ACCESS.2020.3018866.
[21] ZHAO J, GAO Z M, SUN W. The improved slime mould algorithm with Levy flight[J]. Journal of Physics: Conference Series, 2020, 1617: 012033. DOI: 10.1088/1742-6596/1617/1/012033.
[22] ZHAO J, GAO Z M. The hybridized Harris hawk optimization and slime mould algorithm[J]. Journal of Physics: Conference Series, 2020, 1682: 012029. DOI: 10.1088/1742-6596/1682/1/012029.
[23] GAO Z M, ZHAO J, YANG Y, et al. The hybrid grey wolf optimization-slime mould algorithm[J]. Journal of Physics: Conference Series, 2020, 1617: 012034. DOI: 10.1088/1742-6596/1617/1/012034.
[24] WU D, LIANG X D, HE M W. Orthogonal learning-based improved slime mould algorithm for global optimization[C]// 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Piscataway, NJ: IEEE, 2021: 257-263. DOI: 10.1109/ICPICS52425.2021.9524136.
[25] HU J, GUI W Y, HEIDARI A A, et al. Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection[J]. Knowledge-Based Systems, 2021, 237: 107761. DOI: 10.1016/j.knosys.2021.107761.
[26] WEI Y Y, ZHOU Y Q, LUO Q F, et al. Optimal reactive power dispatch using an improved slime mould algorithm[J]. Energy Reports, 2021, 107: 8742-8759. DOI: 10.1016/j.egyr.2021.11.138.
[27] NAIK M K, PANDA R, ABRAHAM A. Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm[J]. Journal of King Saud University: Computer and Information Sciences, 2022, 34(7): 4524-4536. DOI: 10.1016/j.jksuci.2020.10.030.
[28] RIZK-ALLAH R M, HASSANIEN A E, SLOWIK A. Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization[J]. Neural Computing and Applications, 2020, 32(17): 13715- 13746. DOI: 10.1007/s00521-020-04779-w.
[29] 张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900. DOI: 10.13195/j.kzyjc.2018.0795.
[30] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Piscataway, NJ: IEEE, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345.
[31] 姜天华. 基于灰狼优化算法的低碳车间调度问题[J]. 计算机集成制造系统, 2018, 24(10): 2428-2435. DOI: 10.13196/j.cims.2018.10.006.
[32] 黄晨晨, 魏霞, 黄德启, 等.求解高维复杂函数的混合蛙跳-灰狼优化算法[J]. 控制理论与应用, 2020, 37(7): 1655-1666. DOI: 10.7641/CTA.2020.90461.
[1] 代佳洋, 周栋. 基于多任务学习的跨语言信息检索方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 69-81.
[2] 肖飞, 康增彦, 王维红. 两种算法用于预测A2/O工艺脱氮条件[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 173-184.
[3] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36-48.
[4] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1-12.
[5] 彭涛, 唐经, 何凯, 胡新荣, 刘军平, 何儒汉. 基于多步态特征融合的情感识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 104-111.
[6] 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120.
[7] 蒋瑞, 徐娟, 李强. 基于跨域均值逼近的轴承剩余使用寿命预测[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 121-131.
[8] 段美玲, 潘巨龙. 基于双向LSTM神经网络可穿戴跌倒检测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 141-150.
[9] 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160.
[10] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171.
[11] 陈高建, 王菁, 栗倩文, 袁云静, 曹嘉琛. 数据驱动的自动化机器学习流程生成方法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 185-193.
[12] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57-67.
[13] 唐峯竹, 唐欣, 李春海, 李晓欢. 基于深度强化学习的多无人机任务动态分配[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 63-71.
[14] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98.
[15] 许伦辉, 苏楠, 骈宇庄, 林培群. 基于优化极限学习机的公交行程时间预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 64-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发