|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 98-108.doi: 10.16088/j.issn.1001-6600.2021122104
王喜敏, 袁杰*, 寇巧媛
WANG Ximin, YUAN Jie*, KOU Qiaoyuan
摘要: 针对黏菌算法(slime mould algorithm, SMA)搜索效率低和陷入局部最优的问题,本文提出一种多策略改进黏菌算法。首先,通过Tent映射反向学习策略求得较优种群作为初始种群,提高算法收敛速度;其次,黏菌通过自适应权值策略和扰动策略更新位置,调整算法勘探能力和开发能力,避免陷入早熟并提高收敛速度;最后,与PSO、WOA、GWO、SMA等4种算法和相关改进SMA算法相比,对CEC测试函数的寻优结果表明:本文改进算法的搜索效率和避免陷入局部最优能力较强,算法能在较短时间内找到全局最优值,对测试函数的收敛速度和收敛精度均有不同程度提高。
中图分类号:
[1] LIN L, GEN M. Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation[J]. Soft Computing, 2009, 13(2): 157-168. DOI: 10.1007/s00500-008-0303-2. [2] 王国宇, 黄植功, 戴明. 基于改进粒子群算法的无刷电机模糊控制研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 21-27. DOI: 10.16088/j.issn.1001-6600.2016.02.004. [3] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. DOI: 10.16088/j.issn.1001-6600.2020093002. [4] 富立琪,王华倩,乔学工.基于k-means分簇和灰狼优化的无线传感网络路由算法[J].电子设计工程,2021,29(23):1-6.DOI:10.14022/j.issn1674-6236.2021.23.001. [5] 刘景森, 郑智远, 李煜. 一种交互演化改进鲸鱼算法及其收敛性分析[J/OL]. 控制与决策:1-9[2021-12-21]. https://doi.org/10.13195/j.kzyjc.2021.0807. [6] 许伦辉, 陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 1-8. DOI: 10.16088/j.issn.1001-6600.2019.02.001. [7] 雷蕾,陈宏滨.基于萤火虫算法的无线可充电传感器网络的充电策略[J].桂林电子科技大学学报,2021,41(6):477-483.DOI:10.16725/j.cnki.cn45-1351/tn.2021.06.012. [8] 许伦辉, 尹诗德, 刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1-7. DOI: 10.16088/j.issn.1001-6600.2018.02.001. [9] LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323. DOI: 10.1016/j.future.2020.03.055. [10] CHEN H L, ZANG Q, LUO J, et al. An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine[J]. Applied Soft Computing, 2019, 86(11):105884. DOI: 10.1016/j.asoc.2019.105884. [11] 龙洋, 苏义鑫, 廉城, 等. 混合细菌觅食算法求解无人艇路径规划问题[J]. 华中科技大学学报(自然科学版), 2022, 50(3): 68-73. DOI: 10.13245/j.hust.220313. [12] MOSTAFA M, REZK H, ALY M, et al. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100849. DOI: 10.1016/j.seta.2020.100849. [13] LIU Y, HEIDARI A A, YE X J, et al. Boosting slime mould algorithm for parameter identification of photovoltaic models[J]. Energy, 2021, 234: 121164. DOI: 10.1016/j.energy.2021.121164. [14] EKINCI S, IZCI D, ZEYNELGIL H L, et al. An application of slime mould algorithm for optimizing parameters of power system stabilizer[C]// 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). Piscataway, NJ: IEEE, 2020: 530-534. DOI: 10.1109/ISMSIT50672.2020.9254597. [15] AGARWAL D, BHARTI P S. Implementing modified swarm intelligence algorithm based on slime moulds for path planning and obstacle avoidance problem in mobile robots[J]. Applied Soft Computing, 2021, 107: 107372. DOI: 10.1016/j.asoc.2021.107372. [16] HASSAN M H, KAMEL S, ABUALIGAH L, et al. Development and application of slime mould algorithm for optimal economic emission dispatch[J]. Expert Systems with Applications, 2021, 182: 115205. DOI: 10.1016/j.eswa.2021.115205. [17] 翟青海,谢晓兰.混合云环境下考虑工作流的任务调度策略[J].桂林理工大学学报,2021,41(4):891-896. DOI: 10.3969/j.issn.1674-9057.2021.04.024. [18] LIU M J, LI Y H, HUO Q, et al. A two-way parallel slime mold algorithm by flow and distance for the travelling salesman problem[J]. Applied Sciences, 2020, 10(18): 6180. DOI: 10.3390/app10186180. [19] 肖亚宁,孙雪,李三平, 等. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 21(28): 12130-12138. DOI: 10.3969/j.issn.1671-1815.2021.28.028. [20] CHEN Z Y, LIU W B. An efficient parameter adaptive support vector regression using K-means clustering and chaotic slime mould algorithm[J]. IEEE Access, 2020, 8:156851-156862. DOI:10.1109/ACCESS.2020.3018866. [21] ZHAO J, GAO Z M, SUN W. The improved slime mould algorithm with Levy flight[J]. Journal of Physics: Conference Series, 2020, 1617: 012033. DOI: 10.1088/1742-6596/1617/1/012033. [22] ZHAO J, GAO Z M. The hybridized Harris hawk optimization and slime mould algorithm[J]. Journal of Physics: Conference Series, 2020, 1682: 012029. DOI: 10.1088/1742-6596/1682/1/012029. [23] GAO Z M, ZHAO J, YANG Y, et al. The hybrid grey wolf optimization-slime mould algorithm[J]. Journal of Physics: Conference Series, 2020, 1617: 012034. DOI: 10.1088/1742-6596/1617/1/012034. [24] WU D, LIANG X D, HE M W. Orthogonal learning-based improved slime mould algorithm for global optimization[C]// 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Piscataway, NJ: IEEE, 2021: 257-263. DOI: 10.1109/ICPICS52425.2021.9524136. [25] HU J, GUI W Y, HEIDARI A A, et al. Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection[J]. Knowledge-Based Systems, 2021, 237: 107761. DOI: 10.1016/j.knosys.2021.107761. [26] WEI Y Y, ZHOU Y Q, LUO Q F, et al. Optimal reactive power dispatch using an improved slime mould algorithm[J]. Energy Reports, 2021, 107: 8742-8759. DOI: 10.1016/j.egyr.2021.11.138. [27] NAIK M K, PANDA R, ABRAHAM A. Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm[J]. Journal of King Saud University: Computer and Information Sciences, 2022, 34(7): 4524-4536. DOI: 10.1016/j.jksuci.2020.10.030. [28] RIZK-ALLAH R M, HASSANIEN A E, SLOWIK A. Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization[J]. Neural Computing and Applications, 2020, 32(17): 13715- 13746. DOI: 10.1007/s00521-020-04779-w. [29] 张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900. DOI: 10.13195/j.kzyjc.2018.0795. [30] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Piscataway, NJ: IEEE, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345. [31] 姜天华. 基于灰狼优化算法的低碳车间调度问题[J]. 计算机集成制造系统, 2018, 24(10): 2428-2435. DOI: 10.13196/j.cims.2018.10.006. [32] 黄晨晨, 魏霞, 黄德启, 等.求解高维复杂函数的混合蛙跳-灰狼优化算法[J]. 控制理论与应用, 2020, 37(7): 1655-1666. DOI: 10.7641/CTA.2020.90461. |
[1] | 代佳洋, 周栋. 基于多任务学习的跨语言信息检索方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 69-81. |
[2] | 肖飞, 康增彦, 王维红. 两种算法用于预测A2/O工艺脱氮条件[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 173-184. |
[3] | 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36-48. |
[4] | 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1-12. |
[5] | 彭涛, 唐经, 何凯, 胡新荣, 刘军平, 何儒汉. 基于多步态特征融合的情感识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 104-111. |
[6] | 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120. |
[7] | 蒋瑞, 徐娟, 李强. 基于跨域均值逼近的轴承剩余使用寿命预测[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 121-131. |
[8] | 段美玲, 潘巨龙. 基于双向LSTM神经网络可穿戴跌倒检测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 141-150. |
[9] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[10] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[11] | 陈高建, 王菁, 栗倩文, 袁云静, 曹嘉琛. 数据驱动的自动化机器学习流程生成方法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 185-193. |
[12] | 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57-67. |
[13] | 唐峯竹, 唐欣, 李春海, 李晓欢. 基于深度强化学习的多无人机任务动态分配[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 63-71. |
[14] | 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98. |
[15] | 许伦辉, 苏楠, 骈宇庄, 林培群. 基于优化极限学习机的公交行程时间预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 64-77. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |