广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 406-417.doi: 10.16088/j.issn.1001-6600.2022022707

• 综述 • 上一篇    下一篇

厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望

王昱琛1,2, 宿程远1,2*, 丁凤秀2, 王晴2, 李新娟2, 邓雪2   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-02-27 修回日期:2022-04-13 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 宿程远(1981—), 男, 河北晋州人, 广西师范大学教授, 博士。E-mail: suchengyuan2008@126.com
  • 基金资助:
    国家自然科学基金(52060003)

Current Situation and Prospect of Low Carbon Treatment of Food Waste and Excess Sludge by Anaerobic Co-Digestion

WANG Yuchen1,2, SU Chengyuan1,2*, DING Fengxiu2, WANG Qing2, LI Xinjuan2, DENG Xue2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-02-27 Revised:2022-04-13 Online:2022-09-25 Published:2022-10-18

摘要: 随着我国城市化进程的加快,餐厨垃圾的量不断增加,污水处理厂的新扩建及升级改造在提高污水处理量的同时也增大了剩余污泥的产量,如何有效处理餐厨垃圾与剩余污泥引起了人们的广泛关注。本文阐述餐厨垃圾与剩余污泥厌氧共消化过程中,脂质、氨氮、盐分、辣椒素、微塑料和抗生素等抑制性物质对厌氧共消化过程稳定性的影响及其机制;总结了通过物理、化学、生物等预处理方法去除抑制性物质,添加生物炭、零价铁等强化性物质,以提高厌氧共消化的效能与稳定性;归纳了在餐厨垃圾与剩余污泥处理中将微生物燃料电池、微生物电解碳捕获、热解、微藻等技术与厌氧共消化技术相结合的耦合技术,从而减少餐厨垃圾与剩余污泥处理过程的碳排放,旨在为未来餐厨垃圾与剩余污泥厌氧共消化处理研究提供技术支撑,实现绿色低碳处理,助力我国早日实现碳达峰、碳中和。

关键词: 餐厨垃圾, 剩余污泥, 厌氧共消化, 强化措施, 碳减排

Abstract: As an important part of municipal solid waste, the outputof food wasteis increasing with the acceleration of urbanization in China. Meanwhile, the construction and upgrading of sewage treatment plants have increased the production of excess sludge. Therefore, the effective treatment of food waste and excess sludge has attracted extensive attention. Firstly, the effects and mechanisms of inhibitory substances such as lipid, ammonia, salt, capsaicin, microplastic and antibiotics on the stability of the anaerobic co-digestion of food waste and excess sludge were expounded. Secondly, it was proposed that the inhibitory substances could be removed by physical, chemical and biological pretreatment methods, and the appropriate amount of biochar, zero-valent iron and other strengthening substances should be added to improve the efficiency and stability of anaerobic co-digestion. The coupling technology combining microbial fuel cell, microbial electrolysis carbon capture, pyrolysis, microalgae with anaerobic co-digestion technology in the treatment of food waste and excess sludge was summarized. The purpose is to reduce the carbon emission in the treatment process of food waste and excess sludge, and finally realize the green and low-carbon treatment.

Key words: food waste, excess sludge, anaerobic co-digestion, strengthening measures, carbon emission reduction

中图分类号: 

  • X703.1
[1]KUANG Y M, LIN B Q. Public participation and city sustainability: evidence from urban garbage classification in China[J]. Sustainable Cities and Society, 2021, 67: 102741.
[2]HAN W B, ZHAO Y Z, CHEN H. Study on biogas production of joint anaerobic digestion with excess sludge and kitchen waste[J]. Procedia Environmental Sciences, 2016, 35: 756-762.
[3]黄智, 梁秋萍, 宿程远, 等. 复合酶水解餐厨垃圾研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 111-116.
[4]YU D Y, YU Y, TANG J W, et al. Application fields of kitchen waste biochar and its prospects as catalytic material: a review[J]. Science of the Total Environment, 2022, 810: 152171.
[5]HAN W, JIN P K, CHEN D W, et al. Resource reclamation of municipal sewage sludge based on local conditions: a case study in Xi’an, China[J]. Journal of Cleaner Production, 2021, 316:128189.
[6]XIAO Y, RAHEEM A, DING L, et al. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery: a review[J]. Chemosphere, 2022, 287: 131969.
[7]赵建伟. 盐度和油脂对餐厨垃圾和剩余污泥厌氧发酵产短链脂肪酸的影响与机理[D]. 长沙:湖南大学,2018.
[8]DIAMANTIS V, EFTAXIAS A, STAMATELATOU K, et al. Bioenergy in the era of circular economy: anaerobic digestion technological solutions to produce biogas from lipid-rich wastes[J]. Renewable Energy, 2021, 168: 438-447.
[9]DONG H Q, YUE L C, CHENG J, et al. Microbial electrochemical degradation of lipids for promoting methane production in anaerobic digestion[J]. Bioresource Technology, 2021,345: 126467.
[10]张星星, 焦彭博, 杨汇莹, 等. 剩余污泥与餐厨垃圾协同厌氧消化研究进展[J]. 中国环境科学, 2022, 42(5): 2179-2194.
[11]ZHU K Y, ZHANG L, MU L, et al. Comprehensive investigation of soybean oil-derived LCFAs on anaerobic digestion of organic waste: inhibitory effect and transformation[J]. Biochemical Engineering Journal, 2019, 151:107314.
[12]YUE L C, CHENG J, HUA J J, et al. A sodium percarbonate/ultraviolet system generated free radicals for degrading capsaicin to alleviate inhibition of methane production during anaerobic digestion of lipids and food waste[J]. Science of the Total Environment, 2021, 761: 143269.
[13]DU M T, LIU X R, WANG D B, et al. Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge[J]. Water Research, 2021, 188: 116539.
[14]LI Y Y, JIN Y Y, LI J H, et al. Effects of pungency degree on mesophilic anaerobic digestion of kitchen waste[J]. Applied Energy, 2016, 181: 171-178.
[15]TORRECILLAS A, SCHNEIDER M, FERNÖNDEZ-MARTÍNEZ A M, et al. Capsaicin fluidifies the membrane and localizes itself near the lipid-water interface[J]. ACS Chemical Neuroscience, 2015, 6: 1741-1750.
[16]JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: a critical review[J]. Journal of Water Process Engineering, 2019, 32: 100899.
[17]CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: a review[J]. Bioresource Technology, 2008, 99: 4044-4064.
[18]YU D W, WANG T, LIANG Y S, et al. Delivery and effects of proton pump inhibitor on anaerobic digestion of food and kitchen waste under ammonia stress[J]. Journal of Hazardous Materials, 2021, 416: 126211.
[19]COOK S M, SKERLOS S J, RASKIN L, et al. A stability assessment tool for anaerobic codigestion[J]. Water Research, 2017, 112: 19-28.
[20]ZHANG J, ZHANG R T, HE Q L, et al. Adaptation to salinity: response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress[J]. Journal of Bioscience and Bioengineering, 2020, 130: 173-178.
[21]ROMERO-GÜIZA M S, MATA-ALVAREZ J, CHIMENOS J M, et al. The effect of magnesium as activator and inhibitor of anaerobic digestion[J]. Waste Management, 2016, 56: 137-142.
[22]MA H T, GUO C Y, YAO M, et al. Calcium ions affect sludge digestion performance via changing extracellular polymeric substances in anaerobic bioreactor[J]. Biomass and Bioenergy, 2020, 137: 105548.
[23]ZHANG Y C, WU D, SU Y L, et al. Occurrence, influence and removal strategies of mycotoxins, antibiotics and microplastics in anaerobic digestion treating food waste and co-digestive biosolids: a critical review[J]. Bioresource Technology, 2021, 330: 124987.
[24]AZIZ A, SENGAR A, BASHEER F, et al. Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 2022, 10: 106423.
[25]CETECIOGLU Z, ORHON D. How do sulfamethoxazole and tetracycline affect the utilization of short chain fatty acids under anaerobic conditions?[J]. Journal of Environmental Chemical Engineering, 2018, 6: 1305-1313.
[26]WANG P L, LI X N, CHU S Q, et al. Metatranscriptomic insight into the effects of antibiotic exposure on performance during anaerobic co-digestion of food waste and sludge[J]. Journal of Hazardous Materials, 2022, 423: 127163.
[27]AYDIN S, SHAHI A, OZBAYRAM E G, et al. Use of PCR-DGGE based molecular methods to assessment of microbial diversity during anaerobic treatment of antibiotic combinations[J]. Bioresource Technology, 2015, 192: 735-740.
[28]AZIZI S M M, HAI F I, LU W J, et al. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion[J]. Bioresource Technology, 2021, 329: 124894.
[29]WEI W, HUANG Q S, SUN J, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science and Technology, 2019, 53: 2509-2517.
[30]WEI W, HAO Q, CHEN Z J, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182: 116041.
[31]WEI W, HUANG Q S, SUN J, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science and Technology, 2019, 53: 9604-9613.
[32]FU S F, DING J N, ZHANG Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70.
[33]YUE L C, CHENG J, TANG S Q, et al. Ultrasound and microwave pretreatments promote methane production potential and energy conversion during anaerobic digestion of lipid and food wastes[J]. Energy, 2021, 228: 120525.
[34]WANG X Q, LYU T, DONG R J, et al. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion[J]. Journal of Environmental Management, 2022, 301: 113914.
[35]KIRAN E U, TRZCINSKI A P, LIU Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment[J]. Bioresource Technology, 2015, 183: 47-52.
[36]AYOL A. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-I: performance evaluations[J]. Process Biochemistry, 2005, 40: 2427-2434.
[37]ABBAS Y, YUN S N, WANG Z Q, et al. Recent advances in bio-based carbon materials for anaerobic digestion: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110378.
[38]YANG H Y, WANG K, WANG W, et al. Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation[J]. Bioresource Technology, 2013, 130: 578-583.
[39]YUAN X F, WEN B T, MA X G, et al. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method[J]. Bioresource Technology, 2014, 154: 1-9.
[40]YANG Z Y, SUN H Y, ZHOU L, et al. Bioaugmentation with well-constructed consortia can effectively alleviate ammonia inhibition of practical manure anaerobic digestion[J]. Water Research, 2022, 215: 118244.
[41]ZHAO W X, YANG H Z, HE S F, et al. A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341: 125797.
[42]QIU L, DENG Y F, WANG F, et al. A review on biochar-mediated anaerobic digestion with enhanced methane recovery[J]. Renewable and Sustainable Energy Reviews, 2019, 115:109373.
[43]ALTAMIRANO-CORONA M F, ANAYA-REZA O, DURÖN-MORENO A. Biostimulation of food waste anaerobic digestion supplemented with granular activated carbon, biochar and magnetite: a comparative analysis[J]. Biomass and Bioenergy, 2021, 149: 106105.
[44]WANG G J, LI Q, YUWEN C S, et al. Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition[J]. International Journal of Hydrogen Energy, 2021, 46: 9666-9677.
[45]LIU X, MENG Q T, WU F J, et al. Enhanced biogas production in anaerobic digestion of sludge medicated by biochar prepared from excess sludge: role of persistent free radicals and electron mediators[J]. Bioresource Technology, 2022, 347: 126422.
[46]KAUR G, JOHNRAVINDAR D, WONG J W C. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: a step towards increased organic loading efficiency in co-digestion[J]. Bioresource Technology, 2020, 308: 123250.
[47]QI Q X, SUN C, ZHANG J X, et al. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: the bioavailability of trace elements and potential direct interspecies electron transfer[J]. Chemical Engineering Journal, 2021, 406: 126833.
[48]ZHAO D Y, YAN B H, LIU C, et al. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 338: 125531.
[49]CAI Y F, JANKE L, ZHENG Z H, et al. Enhancing anaerobic digestion of chicken manure leachate: effects of trace elements supplementation on methane production[J]. Bioresource Technology Reports, 2021, 14: 100662.
[50]ZHANG W L, CHEN B, LI A M, et al. Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability[J]. Bioresource Technology, 2019, 275: 172-182.
[51]CAI Y F, HUA B B, GAO L J, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion: focus on changes in microbial communities using high-throughput sequencing[J]. Bioresource Technology, 2017, 239: 454-463.
[52]JIANG X R, LYU Q, BI L F, et al. Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response[J]. Chemosphere, 2022, 286: 131356.
[53]LIANG J L, LUO L W, LI D Y, et al. Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: performance, stability, and underlying mechanism[J]. Bioresource Technology, 2021, 337: 125384.
[54]RAGASRI S, VASA T N, SABUMON P C. A mini review on effect of nano particles of Fe in the anaerobic digestion of waste activated sludge[J]. Materials Today: Proceedings, 2022, 51: 1482-1488.
[55]SUN M, ZHANG Z, LIU G, et al. Enhancing methane production of synthetic brewery water with granular activated carbon modified with nanoscale zero-valent iron (NZVI) in anaerobic system[J]. Science of the Total Environment, 2021, 760: 143933.
[56]KONG X, NIU J N, ZHANG W J, et al. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks[J]. Science of the Total Environment, 2021, 791: 148415.
[57]HAO X D, BATSTONE D, GUEST J S. Carbon neutrality: an ultimate goal towards sustainable wastewater treatment plants[J]. Water Research, 2015, 87: 413-415.
[58]ZHANG J, DU Z L, FU L Q, et al. Novel anaerobic digestion and carbon dioxide emissions efficiency analysis of food waste treatment based on SBM-DEA model[J]. Journal of Cleaner Production, 2021, 328: 129591.
[59]GUO Q, DAI X H. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: taking kitchen waste synergetic digestion project in Zhenjiang as an example[J]. Waste Management, 2017, 69: 360-364.
[60]沈耀良. 城市污水处理技术走向低碳绿色[J]. 苏州科技大学学报(工程技术版), 2021, 34(3): 1-16.
[61]THANARASU A, PERIYASAMY K, SUBRAMANIAN S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: fundamentals, innovative design and scale-up deliberation[J]. Chemosphere, 2022, 287: 131886.
[62]WANG H, LIU Y, DU H X, et al. Exploring the effect of voltage on biogas production performance and the methanogenic pathway of microbial electrosynthesis[J]. Biochemical Engineering Journal, 2021, 171: 108028.
[63]YU Z, LIU W Z, SHI Y J, et al. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion[J]. Science of the Total Environment, 2021, 767: 144344.
[64]ZHANG Y F, ANGELIDAKI I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges[J]. Water Research, 2014, 56: 11-25.
[65]LIU Z H, ZHOU A J, ZHANG J G, et al. Hydrogen recovery from waste activated sludge: role of free nitrous acid in a prefermentation-microbial electrolysis cells system[J]. ACS Sustainable Chemistry and Engineering, 2018, 6: 3870-3878.
[66]CHANDRASEKHAR K, RAJ T, RAMANAIAH S V, et al. Regulation and augmentation of anaerobic digestion processes via the use of bioelectrochemical systems[J]. Bioresource Technology, 2022, 346: 126628.
[67]MAYER F, ENZMANN F, LOPEZ A M, et al. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide[J]. Bioresource Technology, 2019, 289: 121706.
[68]WANG S L, WEN Y M, SHI Z Y, et al. Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste[J]. Energy Conversion and Management, 2022, 252: 115042.
[69]YANG J X, VAN LIER J B, LI J, et al. Integrated anaerobic and algal bioreactors: a promising conceptual alternative approach for conventional sewage treatment[J]. Bioresource Technology, 2022, 343: 126115.
[70]KARRAY R, ELLOUMI W, BEN ALI R, et al. A novel bioprocess combining anaerobic co-digestion followed by ultra-filtration and microalgae culture for optimal olive mill wastewater treatment[J]. Journal of Environmental Management, 2022, 303: 114188.
[71]SU C Y, DENG Q J, CHEN Z P, et al. Denitrifying anaerobic methane oxidation process responses to the addition of growth factor betaine in the MFC-granular sludge coupling system: enhancing mechanism and metagenomic analysis[J]. Journal of Hazardous Materials, 2021, 416: 126139.
[1] 黄智, 梁秋萍, 宿程远, 伍长青, 陈孟林. 复合酶水解餐厨垃圾研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发