广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (1): 34-43.doi: 10.16088/j.issn.1001-6600.2018.01.005

• • 上一篇    下一篇

基于晶格Boltzmann方法的接触角实时测量研究

黄兵方,闻炳海*,邱文,赵琬玲,陈燕雁   

  1. 广西师范大学计算机科学与信息工程学院,广西桂林541004
  • 收稿日期:2017-04-06 出版日期:2018-01-20 发布日期:2018-07-17
  • 通讯作者: 闻炳海(1974—),男,河北青县人,广西师范大学副教授,博士。E-mail:oceanwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11362003,111462003);广西自然科学基金(2014GXNSFAA118018);广西高校科学技术研究重点项目(KY2015ZD017 );广西研究生教育创新计划项目(XYCSZ2017068)

Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method

HUANG Bingfang,WEN Binghai*,QIU Wen,ZHAO Wanling,CHEN Yanyan   

  1. Computer Science and Information Engineering Institute,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2017-04-06 Online:2018-01-20 Published:2018-07-17

摘要: 接触角在表面湿润、毛细现象和移动接触线等问题中是基本的特征量。虽然数值计算中已经可以有效地模拟接触角现象,但是在动态模拟中,接触角还不能被实时地精确测量。基于化学势晶格Boltzmann方法,本文设计一种几何的方法实时测量接触角。当忽略重力的影响时,该方法计算结果与球冠模型的理论预期保持一致,而且不受液滴大小的影响;当考虑重力影响时,虽然液滴呈现明显的变形,但是测量所得的微观接触角保持不变,与理论预期相符。当基板倾斜时,液滴的前进角逐渐增大,后退角逐渐减小,接触角迟滞越来越大,而且能够被实时地测量。

关键词: 接触角, 接触角迟滞, 数值计算, 化学势, 晶格Boltzmann方法

Abstract: The contact angle is the basic feature in the surface wetting,capillary phenomena and moving contact lines. Although the numerical calculation is able to effectively simulate the contact angle phenomenon, in the dynamic simulation,the contact angle can not be accurately measured in real time. Based on the chemical potential lattice Boltzmann method, a geometric method is designed to measure the contact angle in real time. Under the condition of neglecting gravity,the calculated results are consistent with the theoretical expectations of the ball crown model and the results are not affected by the droplet size. Under the consideration of gravity conditions,although the droplets show significant deformation, the measured micro-contact angle remains unchanged,consistent with the theoretical expectations. When the substrate is tilted,the advancing angle of the droplet gradually increases and the receding angle decreases gradually . The method can measure the dynamic contact angle hysteresis in real time.

Key words: contact angle, contact angle hysteresis, chemical potential, lattice Boltzmann method

中图分类号: 

  • O35
[1] BIGELOW W C,PICKETT D L,ZISMAN W A. Oleophobic monolayers: I. films adsorbed from solution in non-polar liquids[J]. Journal of Colloid Science,1946,1(6):513-538.
[2] EXTRAND C W,KUMAGAI Y. Contact angles and hysteresis on soft surfaces[J]. Journal of Colloid and Interface Science,1996,184(1):191-200.
[3] BEZUGLYI B A,TARASOV O A,FEDORETS A A. Modified tilting-plate method for measuring contact angles[J]. Colloid Journal,2001,63(6):668-674.
[4] HUNTER R J,WHITE L R. Foundations of colloid science[M]. Oxford: Clarendon Press, 1987.
[5] TRETINNIKOV O N,IKADA Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified wilhelmy balance method[J]. Langmuir,1994,10(5):1606-1614.
[6] KRISHNAN A,LIU Y H,CHA P,et al. An evaluation of methods for contact angle measurement[J]. Colloids and Surfaces B: Biointerfaces,2005,43(2):95-98.
[7] YUAN Yuehua,LEE T R. Contact angle and wetting properties[J]. Surface Science Techniques,2013,51:3-34.
[8] BENZI R,BIFERALE L,SBRAGAGLIA M,et al.Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Physical Review E,2006,74(2):021509.
[9] HUANG J J,SHU C,CHEW Y T. Lattice Boltzmann study of droplet motion inside a grooved channel[J].Physics of Fluids,2009,21(2):1070-6631.
[10] BOMMER S,SCHOLL H,SEEMANN R,et al. Depinning of drops on inclined smooth and topographic surfaces: experimental and lattice boltzmann model study[J]. Langmuir,2014,30(37):11086-11095.
[11] HUANG Haibo,THORNE D T,SCHAAP M,et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J].Physical Review E,2007,76(6):066701.
[12] CHEN Li,KANG Qinjun,MU Yutong,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J].International Journal of Heat and Mass Transfer,2014,76:210-236.
[13] JANSEN H P,BLIZNYUK O,KOOIJ E S,et al. Simulating anisotropic droplet shapes on chemically striped patterned surfaces[J].Langmuir 2012,28(1):499-505.
[14] WANG Chunlei,LU Hangjun,WANG Zhigang,et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates[J].Physical Review Letters,2009,103(13):137801-4.
[15] WANG Fengchao,ZHAO Yapu. Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study[J]. Colloid and Polymer Science,2013,291(2):307-315.
[16] WANG Chunlei,WEN Binghai,TU Yusong,et al. Friction reduction at a superhydrophilic surface: role of ordered water[J]. The Journal of Physical Chemistry C, 2015,119(21):11679-11684.
[17] DING Hang,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4):046708.
[18] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Computer Methods in Applied Mechanics and Engineering,2012,247/248:179-200.
[19] LI Q,LUO K H,KANG Q J,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52:62-105.
[20] LADD A J C,VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics,2001,104(5):1191-1251.
[21] WEN Binghai,ZHANG Chaoying,TU Yusong,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. Journal of Computational Physics,2014,266(6): 161-170.
[22] WEN Binghai,ZHANG Chaoying,FANG Haiping. Hydrodynamic force evaluation by momentum exchange method in Lattice Boltzmann simulations[J]. Entropy,2015,17(12):8240-8266.
[23] SHANX,CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E,1993,47(3):1815-1819.
[24] SWIFT M R,OSBORN W R ,YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters,1995,75(5):830-833.
[25] HEX Y, CHEN S ,ZHANG R.A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of Computational Physics,1999,152(2):642-663.
[26] MAZLOOMI M A,CHIKATAMARLA S S,KARLIN I V. Entropic lattice boltzmann method for multiphase flows[J]. Physical Review Letters,2015,114(17):174502.
[27] WEN Binghai,QIN Zhangrong,ZHANG Chaoying,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. Europhysics Letters,2015,112(4): 44002.
[28] CHEN S,CHEN H,MARTINEZ D,et al. Lattice Boltzmann model for simulation of magnetohydrodynamics[J]. Physical Review Letters,1991,67(27):3776-3779.
[29] CHEN Hudong,CHEN Shiyi,MATTHAEUS W H. Recovery of the navier-stokes equations using a lattice-gas boltzmann method[J]. Physical Review A,1992,45(8):5339-5342.
[30] QIAN Y H,DHUMIRES D,LALLEMAND P. Lattice bgk models for navier-stokes equation[J]. Europhysics Letters,1992,17(6):479-484.
[31] BENZI R,SUCCI S,VERGASSOLA M. The lattice Boltzmann equation: theory and applications[J]. Physiological Reports,1992,222(3):145-197.
[32] LALLEMAND P,LUO Lishi. Theory of the lattice Boltzmann method: Dispersion,dissipation,isotropy,Galilean invariance,and stability[J]. Physical Review E,2000,61(6): 6546-6562.
[33] D’HUMIRES D,GINZBURG I,KRAFCZYK M,et al.Multiple-relaxation-time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions of the Royal Society of London. Series A,2002,360(1792):437-451.
[34] GINZBURG I,VERHAEGHE F,D’HUMIRES D. Two-relaxation-time Lattice Boltzmann scheme: About parametrization,velocity,pressure and mixed boundary conditions[J]. Communications in Computational Physics,2008,3(2):427-478.
[35] KARLIN I V,FERRANTE A,OTTINGER H C. Perfect entropy functions of the Lattice Boltzmann method[J]. Europhysics Letters,1999,47(2):182-188.
[36] SUCCI S. Colloquium: Role of the H theorem in lattice Boltzmann hydrodynamic simulations[J]. Reviews of modern physics,2002,74(4):1203-1220.
[37] ROWLINSON J S,WIDOM B. Molecular theory of capillarity[M].Clarendon:Oxford,1982.
[38] SWIFT M R,ORLANDINI E,OSBORN W R,et al.Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E,1996,54(5):5041.
[39] JAMET D,TORRES D,BRACKBILL J U. On the theory and computation of surface tension:the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics,2002,182(1):262-276.
[40] ZHENG H W,SHU C,CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of Computational Physics,2006,218(1):353-371.
[41] PICKNETT R G,BEXON R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science,1977,61(2):336-350.
[1] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[2] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37.
[3] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
[4] 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发