|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (3): 151-160.doi: 10.16088/j.issn.1001-6600.2021071405
孔亚钰1+, 卢玉洁1+, 孙中天2, 肖敬先1, 侯昊辰1, 陈廷伟1*
KONG Yayu1+, LU Yujie1+, SUN Zhongtian2, XIAO Jingxian1, HOU Haochen1, CHEN Tingwei1*
摘要: 在基于会话的推荐中,与传统序列建模相比,将会话序列建模为图结构在该领域表现得更为出色。但是,现有的研究方法仅利用图结构来挖掘项目之间转换特性,以此捕获用户当前兴趣的能力有限。本文提出一种面向强化当前兴趣的图神经网络推荐算法,通过引入位置嵌入,并与图神经网络相结合,从而互补顺序感知模型和图形感知模型的优势。会话序列被建模为图结构,并取原始序列的最后一次点击,通过多头注意力机制计算其对图节点信息的注意力权重,以更加准确地获取用户当前兴趣的表示。同时,在2个真实的数据集上进行验证实验,结果表明本文提出的方法实现了所有方法的最佳性能,特别是在Diginetica数据集上,所有评价指标都提升了7%以上,MRR@10指标甚至提升了9.52%,证明本文所提方法对基于会话推荐的正确性和有效性。
中图分类号:
[1]SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295. [2]SHANI G, HECKERMAN D, BRAFMAN R I. An MDP-based recommender system[J]. Journal of Machine Learning Research, 2005, 6:1265-1295. [3]TAN Y K, XU X X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. [4]祁明明,马文明,单荣杰.基于循环神经网络的旅游地点推荐系统设计与实现[J].电子技术与软件工程,2020(1):184-185. [5]纪强. 基于循环神经网络的深度推荐模型研究[D].合肥:安徽大学,2020. [6]LIU Q, ZENG Y F, MOKHOSIR, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. [7]SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [8]WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. California: AAAI, 2019: 346-353. [9]LI Y J, ZEMEL R, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL].(2016-05-03)[2021-09-09].https://www.microsoft.com/en-us/research/wp-content/uploads/2015/11/1511.05493.pdf. [10]XU C F, ZHAO P P, LIU Y C, et al. Graph contextualized self-attention network for session-based recommendation[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California: IJCAI, 2019: 3940-3946. [11]RENDLE S, FREUDENTHALER C, GANTNER Z. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009:452-461. [12]RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World wide web. New York: ACM, 2010: 811-820. [13]HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL].(2016-03-29)[2021-09-09]. https://arxiv.org/abs/1511.06939. [14]ZHANG Y Y, DAI H J, XU C,et al. Sequential click prediction for sponsored search with recurrent neural networks[C]// Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. New York: ACM, 2014:1369-1375. [15]LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. [16]WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation[C]// Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412. [17]YANARDAG P, VISHWANATHAN S V N. Deep graph kernels[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1365-1374. [18]MICHELI A. Neural network for graphs: a contextual constructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511. [19]YU F, ZHU Y Q, LIUQ, et al. TAGNN: target attentive graph neural networks for session-based recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM,2020:1921-1924. [20]CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1172-1180. [21]孙鑫,刘学军,李斌,等.基于图神经网络和时间注意力的会话序列推荐[J].计算机工程与设计,2020,41(10): 2913-2920. [22]南宁,杨程屹,武志昊.基于多图神经网络的会话感知推荐模型[J].计算机应用,2021,41(2):330-336. [23]任俊伟,曾诚,肖丝雨,等.基于会话的多粒度图神经网络推荐模型[J].计算机应用,2021,41(11):3164-3170. [24]KANG W C, MCAULEY J L. Self-attentive sequential recommendation[C]// 2018 IEEE International Conference on Data Mining(ICDM). Piscataway,NJ:IEEE, 2018: 197-206. [25]JI W D, WANG K Q, WANG X L, et al. Hybrid sequential recommender via time-aware attentive memory network[EB/OL].(2020-05-18)[2021-09-09]. https://arxiv.org/pdf/2005.08598v1. |
[1] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |