|
广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (3): 77-82.
曾上游, 张争珍, 曾绍稳, 周黎明, 王榕峰, 唐文艳, 房新荷, 梁丹
ZENG Shang-you, ZHANG Zheng-zhen, ZENG Shao-wen, ZHOU Li-ming, WANG Rong-feng, TANG Wen-yan, FANG Xin-he, LIANG Dan
摘要: 本文应用含时变分法原理研究一维Fermi-Pasta-Ulam模型,链中粒子的运动方程由含时变分法原理导出,在这个半量子研究中所考虑的量子效应是量子涨落。对于单个粒子,我们采用Jackiw-Kerman波函数。研究结论表明量子涨落能够发散、模糊化甚至破坏Fermi-Pasta-Ulam模型的非线性激发:包络孤子,量子涨落效应与有效普朗克常数有准指数关系。我们进一步发现与有效普朗克常数耦合,非谐耦合强度对量子耗散有联合效应,这种特有的联合效应可能是由Fermi-Pasta-Ulam模型独特的哈密顿量所导致。
中图分类号:
[1] REMOISSENET M.Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models[J].Phys Rev B,1986,33:2386-2392. [2] FLACH S,WILLS C R.Discrete breathers[J].Phys Rep,1998,295:181-264. [3] 徐权,田强.准一维单原子非线性晶格振动的扭结孤子解和反扭结孤子解[J].中国科学:G辑,2004,34(6):648-654. [4] 庞小峰.非线性系统中微观粒子的特性和非线性量子力学[J].中国基础科学,2005,5:43-46. [5] 甘星洋.一维FPU晶格中的经典和量子孤立子[D].湘潭:湘潭大学,2010. [6] KONOTOP V V,TAKENO S.Quantization of weakly nonlinear lattices:envelope solitons[J].Phys Rev E,2001,63:066606. [7] NEUHAUSER D,BAER R,KOSLOFF R.Quantum soliton dynamics in vibrational chains:comparison of fully correlated,mean field,and classical dynamics[J].JChem Phys,2003,118:5729. [8] JACKIW R,KERMAN A.Time-dependent variational principle and the effective action[J].Phys Lett A,1979,71:158-162. [9] HO C L,CHOU C I.Simple variational approach to quantum Frenkel-Kontorova model[J].Phys Rev E,2000,63:016203. [10] TSUE Y,FUJIWARA Y.Time-dependent variational approach in termsof squeezed coherent states[J].Prog Theor Phys,1991,86:443-467. [11] SAUERZAPF A,WAGNER M.Quantum decay of self-localized modes in anharmonic systems[J].Physica B,1999,263:723-726. [12] VITALI D,BONCI L,MANNELLA R,et al.Localization breakdown as a joint effect of nonlinear and quantum dissipation[J].Phys Rev A,1992,45:2285-2293. [13] ZHONG Hong-wei,TANG Yi.Time-dependent variational approach to the phonon dispersion relation of the commensurate quantum frenkel—kontorova model[J].ChinPhys Lett,2006,23(8):1965-1968. [14] LIU Yang,DENG Lei,YANG Zhi-zong,et al.Semi-quantal method approach to small-amplitude nonlinear localized modes in a one-dimensional Klein-Gordon monatomic chain[J].Phys Scr,2011,83(1):015601. [15] HUANG Guo-xiang,SHI Zhu-pei,XU Zai-xin.Asymmetric intrinsic localized in a homogeneous lattice with cubic and quartic anharmonicity[J].Phys Rev B,1993,47(21):14561-14564. [16] 刘洋.一维非线性晶格模型中的量子孤子研究[D].湘潭:湘潭大学,2008. |
[1] | 杨浦, 付喆. 发放脉冲在化学耦合神经环路的周期传播稳定性[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 96-102. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |