广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (4): 96-102.doi: 10.16088/j.issn.1001-6600.2015.04.016

• • 上一篇    下一篇

发放脉冲在化学耦合神经环路的周期传播稳定性

杨浦1, 付喆2   

  1. 1.河南师范大学学报编辑部,河南新乡453007;
    2.新乡学院物理与电子工程学院,河南新乡453003
  • 收稿日期:2015-08-15 出版日期:2015-12-25 发布日期:2018-09-21
  • 通讯作者: 杨浦(1983—),男,河北霸州人,河南师范大学编辑,博士。E-mail: yp4561@163.com
  • 基金资助:
    国家自然科学基金资助项目(11447154);河南师范大学博士科研启动基金资助项目(qd12167)

Stability of Spike Periodic Propagating in Chemical Coupled Neural Loop

YANG Pu1, FU Zhe2   

  1. 1.Editorial Department of Journal, Henan Normal University, Xinxiang Henan 453007, China;
    2.College of Physics and Electronic Engineering, Xinxiang University, Xinxiang Henan 453003, China
  • Received:2015-08-15 Online:2015-12-25 Published:2018-09-21

摘要: 神经网络的持续震荡对生物认知功能有重要作用。本文以化学突触方式耦合的单向纯环网络为研究对象,从两方面分析单脉冲周期传播的稳定性:一方面,是在给定系统参数条件下,对初态的吸引域;另一方面,是在特定初态条件下,对系统参数的吸引域。之后根据所得分析结果,提出2种促进周期传播的方法和一种抑制的方法。其中,利用2次间隔刺激同一神经元的物理机制可能对理解生物实验中的回响现象有启示作用。

关键词: 生物神经网络, 化学突触, 环路, 周期传播, 吸引域, TUM模型

Abstract: Sustained activities are important to cognitive functions in neuroscience. The stability of one single firing signal propagating periodically in a neural loop coupled by chemical synaps-es(Tsodyks - Uziel - Markram model) is investigated in two ways. One is toinvestigate the initial statebasin of attraction under given system parameters;the other is to investigate the system parameter basin of attraction under one special initial condition. Based on the above results, two practicable approaches to promote periodic propagation stable, and one approach to inhabit propagations were propesed. The results of the two stimulations on one neuron approach may give hints to understand the reverberatory in biological experiments. These researches are important to understand the functions of loops in neural networks.

Key words: biological neural network, chemical synapse, loop, periodic propaga-tion, basin of attraction, Tsodyks-Uziel-Markram model

中图分类号: 

  • O415.6
[1] VOGELS T P, RAJAN K, ABBOTT L F. Neural network dynamics[J]. Ann Rev Neurosci, 2005, 28:357.
[2] WANG Sheng-jun, HILGETAG C C, ZHOU Chang-song. Sustained activity in hierarchical modular neural networks:self-organized criticality and oscillations[J]. Fron in Comp Neurosci, 2011, 5:30.
[3] COURTNEY S M, UNGERLEIDER L G, KEIL K,et al. Transient and sustained activity in a distributed neural system for human working memory[J]. Nature, 1997,386:608.
[4] 崔晓华, 黄晓清. 可激发系统及其对应时空斑图综述[J]. 河南师范大学学报:自然科学版, 2014, 42(6):32-41.
[5] ROXIN A, RIECKE H, SOLLA S A. Self-sustained activity in a small-world network of excitable neurons[J]. Phys Rev Lett, 2004, 92(19):198101.
[6] LIAO Xu-hong, XIA Qin-zhi, QIAN Yu, et al. Pattern formation in oscillatory complex networks consisting of excitable nodes[J]. Phys Rev E, 2011, 83(5):123-133.
[7] MI Yuan-yuan, LIAO Xu-hong, HUANG Xu-hui, et al. Long-period rhythmic synchronous firing in a scale-free network[J]. PNAS, 2013, 110(50):e4931-e4936.
[8] QIAN Yu, LIAO Xu-hong, HUANG Xiao-dong, et al. Diverse self-sustained oscillatory patterns and their mechanisms in excitable small-world networks. [J]. Phys Rev E, 2010, 82:026107.
[9] ZHANG Li-sheng, LIAO Xu-hong, MI Yuan-yuan, et al. Attractive target wave patterns in complex networks consisting of excitable nodes[J]. Chin Phys B, 2013, 23:78906.
[10] VISHWANATHAN A, BI Guo-qiang, ZERINGUE H C. Ring-shaped neuronal networks:a plat-form to study persistent activity[J]. Lab on A Chip, 2011, 11(6):1081-1088.
[11] KLINSHOV V V, TERAMAE J N, NEKORKIN V I, et al. Dense neuron clustering explains connectivity statistics in cortical microcircuits[J]. Plos One, 2014, 9(4):e94292.
[12] CHEN Yu-han, WANG Sheng-jun, HILGETAG C C, et al. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems[J]. Plos Comp Bio, 2013, 9(3):251-260.
[13] BEAR M F, CONORS B W, PARADISO M A. 神经科学:探索脑[M]. 王建军,译. 北京:高等教育出版社, 2004.
[14] TSODYKS M, ASHER U A, MARKRAM H. Synchrony generation in recurrent networks with frequency-dependent synapses[J]. J Neurosci, 2000, 20:RC50.
[15] TESHLER D. From neurons to gap junctions:study of complex neural network dynamic-s[D]. Tel Aviv:Tel Aviv University, 2013.
[16] LAU Pak-ming, BI Guo-qiang. Synaptic mechanisms of persistent reverberatory activity in neuronal networks[J]. PNAS, 2005, 102(29):10333.
[17] VOLMAN V, GERKIN R C, LAU Pak-ming, et al. Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks[J]. Phys Bio, 2007, 4:91.
[1] 唐宗湘, 伍冠一. 脊髓水平的痒觉神经环路以及信息传递研究进展[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 236-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发