|
摘要: 利用分析方法,研究一类含n个时滞神经网络模型解的周期振动性,得出保证系统存在周期振动的一组充分条件,理论分析和数值仿真显示,所得结果为此类时滞神经网络提供了新的振动性判定准则。
中图分类号:
[1] ZHANG Hua-guang,WANG Zhan-shan,LIU De-rong.Robust stabilityanalysis for intervalCohen-Grossberg neural networks with unknown time-varying delays[J].IEEETrans Neural Networks,2008,19(11):1942-1955. [2] XU Jun,CAO Yong-yan,SUN You-xian,et al.Absolute exponential stability of recurrent neural networks with generalized activation function[J].IEEE Trans Neural Networks,2008,19(6):1075-1089. [3] 夏文华,邓飞其,罗毅平.具周期输入的有限连续分布时滞神经网络周期解的全局指数稳定性[J].数学物理学报,2009,29A(1):171-178. [4] JIN Hui-liang,ZACKSENHOUSE M.Oscillatory neural networks for robotic yo-yo control[J].IEEE Trans Neural Networks,2003,14(2):317-325. [5] NISHIKAWA T,LAI Ying-cheng,HOPPENSTEADT F C.Capacity of oscillatory associative memory networks with error-free retrieval[J].Physical Riview Letters,2004,92(10):108101. [6] 赵慧炜,李文华,冯春华,等.一类时滞递归神经网络的周期振动性[J].广西师范大学学报:自然科学版,2011,29(1):29-34. [7] YANG Yu,YE Jin.Stability and bifurcation in a simplified five-neuron BAM neural network with delays[J].Chaos,Solitons and Fractals,2009,42(4):2357-2363. [8] 冯春华.一类简化的n个神经元时滞BAM神经网络模型的振动性[J].数学物理学报,2011,31A(5):1-13. [9] CHAFEE N.A bifurcation problem for a functional differential equation of finitely retarded type[J].J Math Anal Appl,1971,35(2):312-348. |
[1] | 赵慧炜, 李文华, 冯春华, 罗晓曙. 一类时滞递归神经网络模型的周期振动性[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 29-34. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |