广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (2): 17-22.

• • 上一篇    下一篇

子午面磁层顶位形结构的MHD模拟研究

母丽丽1, 顾斌1, 陈美红1, 张青梅1, 李传起2   

  1. 1.南京信息工程大学物理与光电工程学院,江苏南京210044;
    2.广西师范大学电子工程学院,广西桂林541004
  • 收稿日期:2012-03-30 出版日期:2012-06-20 发布日期:2018-12-03
  • 通讯作者: 李传起(1964—),男,安徽六安人,广西师范大学教授,博士,博导。E-mail:lcq@nuist.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(41174165,11105075)

An MHD Simulation Study on the Location and Shape of Magnetopause in Meridian Plane

MU Li-li1, GU Bin1, CHEN Mei-hong1, ZHANG Qing-mei1, LI Chuan-qi2   

  1. 1.College of Physics and Optoelectronic Engineering,Nanjing University of Information Science and Technology, Nanjing Jiangsu 210044,China;
    2.College of Electronic Engineering,GuangxiNormal University, Guilin Guangxi 541004,China
  • Received:2012-03-30 Online:2012-06-20 Published:2018-12-03

摘要: 本文基于太阳风-磁层-电离层耦合的全球磁流体力学(MHD)数值模拟,研究几种典型的太阳风动压和行星际磁场条件下,地球子午面上方磁层顶的位置和形状特征,以及磁层顶位形参数日下点距离和磁层顶张角随行星际条件的变化规律。模拟结果表明:正午午夜子午面磁层顶位形具有内凹结构,当行星际磁场为南向时,随磁场强度增强,日下点距离减小;行星际磁场为北向时,随磁场强度增强,日下点距离增大。动压增大,日下点距离减小。南向磁场强度增强,磁层顶张角变大。这些模拟结果与基于卫星数据的高纬经验模型(B00)以及(Schield)模型的经验结论相吻合,说明MHD模拟是研究磁层顶位形的有效工具。特别是在高纬穿越数据的获得受限时,基于对磁层顶位形的物理理论研究构建的数值模拟数据是解决这一问题的有效途径。

关键词: 子午面磁层顶, 位置结构特征, MHD模拟

Abstract: Based on the Solar wind-Magnetosphere-Ionosphere coupling global MHD simulation,the position and shape of the noon midnight meridian plane magnetopause under several solar wind dynamic pressure and interplanetary magnetic field (IMF) conditions are studied.The simulation results show that,in the noon midnight meridian,plane magnetopause shape has a concave structure.And at certain Dp,when southern IMF Bz (Bz<0) increases,the subsolar position (r0) of the magnetopause decreases and when northward (Bz>0)increases,the subsolar position r0 keeps gradually increasing.Significant decreasing of r0 appears with the increase of Dp.For all casesstudied,the flare angle (z0/x0) of the magnetopause increases when (Bz<0)increases.These simulation results are consistent with the empirical results basedon satellite data in high-latitude empirical model (B00) and (Schield) model.That is to say,MHD simulation is an effective tool to study the magnetopause shape.It is an effective way,based on the configuration of physical theory on magnetopause numerical simulation data,to solve the problem that relates to the obtaining of transversing data in high latitudes being limited.

Key words: noon midnight meridian plane, location and shape, MHDsimulation

中图分类号: 

  • P353
[1] FERRARO V C A.On the theory of the first phase of a geomagnetic storm:a new illustrative calculation based on an idealized (plane not cylindrical)model field distribution[J].J Geophys Res,1952,57(1):15-49.
[2] SPREITER J R,BRIGGS B R.Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the earth[J].J Geophys Res,1962,67(1):37-51.
[3] FAIRFIELD D H.Average and unusual locations of the earth's magnetopause and bow shock[J].J Geophys Res,1971,76(28):6700-6716.
[4] FORMISANO V,DOMINGO V,WENZEL K P.The three-dimensional shape of the magnetopause[J].Plane Space Sci,1979,27(9):1137.
[5] SIBECK D G,LOPEZ R E,ROELOF E C.Solar wind control of the magnetopause shape,location,and motion[J].J Geophys Res,1991,96(A4):5489-5495.
[6] ROELOF E C,SIBECK D G.Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure[J].J Geophys Res,1993,98(A2):421.
[7] CHAO J K,WU D J,LIN C H,et al.Models for the size and shape of theearth's magnetopause and bow shock[C]//Cospar Colloquia Series Volume 12:Space Weather Study Using Multipoint Techniques.Oxford:Elsevier Science Ltd.,2002:127-134.
[8] PETRINEC S M,RUSSELL C T.Near-earth magnetotail shape and size as determined from the magnetopause flaring angle[J].J Geophys Res,1996,101(A1):137.
[9] SHUE J H,CHAO J K,FU H C,et al.A new function form to study the solar wind control of the magnetopause size and shape[J].J Geophys Res,1997,102(A5):9497-9511.
[10] SOTIRELIS T,MENG C I.Magnetopause from pressure balance[J].J GeophysRes,1999(104):6889-6898.
[11] BOARDSEN S A,EASTMAN T E,SOTIERLIS T,et al.An empirical model ofthe high-latitude magnetopause[J].J Geophys Res,2000,105(A10):193-219.
[12] 王赤.太阳风—磁层相互作用的磁流体力学数值模拟研究[J].空间科学学报,2011,31(4):413-428.
[13] HU You-qiu,GUO Xiao-cheng,WANG Chi.On the ionospheric and reconnection potentials of the earth:results from global MHD simulations,J Geophys Res,2007,112(A0):7215.
[14] WANG C,LI C X,HUANG Z H,et al.Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times[J].Geophys ResLett,2006,33:L14104.
[15] 林瑞淋,张效信,刘四清,等.高纬磁层顶位形统计分析[J].地球物理学报,2010,53(1):1-9.
[16] 刘惠莲,黄朝晖.基于MHD模拟数据的正午午夜子午面磁层顶位形研究[J].空间科学学报,2011,31(1):15-19.
[17] SCHIELD M A.Pressure balance between solar wind and magnetosphere[J].J Geophys Res,1969,74(5):1275-1286.
[1] 董丽花, 丁留贯, 陈小兰, 曹鑫鑫. 2012年1月23日SEP事件的“twin-CME”爆发现象[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 12-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发