|
广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (1): 15-21.
张红梅1, 肖映雄2, 欧阳媛3
ZHANG Hong-mei1, XIAO Ying-xiong2, OUYANG Yuan3
摘要: 高次协调元能有效克服弹性力学问题的闭锁(Locking)现象,称这种单元为无闭锁(Locking-free)有限元,但它与线性元相比,往往需要更多的计算机存储单元,具有更高的计算复杂性。针对弹性力学问题Locking-free(四次)有限元离散系统的求解,本文通过分析四次有限元与二次有限元空间之间的关系,并利用有限元基函数的特殊性质,如紧支集性,建立一种以二次有限元(P2)为粗水平空间的两水平方法;然后,利用减缩积分方案,以P2/P0元作为四次元空间的粗水平空间,并结合有效的磨光算子,为Locking-free有限元离散系统设计具有更好计算效率和鲁棒性的求解方法。数值实验结果验证了算法的有效性。
中图分类号:
[1] BABUSKA I,SURI M.On locking and robustness in the finite element method[J].SIAM Journal on Numerical Analysis,1992,29:1261-1293. [2] BABUSKA I,SURI M.Locking effects in the finite element approximation of elasticity problems[J].Numerische Ma-thematik,1992,62(1):439-463. [3] ARNOLD D N.Discretization by finite elements of a model parameterdependent problem[J].Numerische Mathematik,1981,37(3):405-421. [4] ARNOLD D N,FALK R S.A new mixed formulation for elasticity[J].Numerische Mathematik,1988,53(1):13-30. [5] MORLEY M.A family of mixed finite elements for linear elasticity[J].Numerische Mathematik,1989,55(6):633-666. [6] BRENNER S C,SUNG L Y.Linear finite element methods for planar linear elasticity[J].Mathematics of Computation,1992,59(200):321-338. [7] WANG Lie-heng,HE Qi.A locking-free scheme of noncomforming rectagular finite element for the planar elasticity[J].Journal of Computational Mathematics,2004,22(5):641-650. [8] LEE C O,LEE J W,SHEEN D W.A locking free nonconforming finite element method for planar linear elasticity[J].Advances in Computational Mathematics,2003,19(1):277-291. [9] SCOTT L R,VOGELIUS M.Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials[J].RAIRO Math Modeling Numer Anal,1985,19(1):111-143. [10] SCOTT L R,VOGELIUS M.Conforming finite element methods for imcompreeeible and nearly incompressible continua[M]//ENGQUIST B E,OSHER S,SOMERVILLE R C J.Large Scale Computations in Fluid Mechanics,Part 1:Lectures in AppliedMathematics Vol 22.Providence,RI:AMS,1985:221-244. [11] ZIENKIEWICZ O C,TAYLOR R L,TOO J M.Reduced integration techniquein general analysis of plates and Shells[J].International Journal for Numerical Method in Engineering,1971,3(2):275-290. [12] BRANDT A.Algebraic multigrid theory:the symmetric case[J].Applied Mathematics of Computation,1986,19(14):23-56. [13] RUGE J W,STUBEN K.Algebraic multigrid,in Multigrid Methods[M].Philadelphia,PA:Society for Industrial and Applied Mathematics,1987. [14] RUGE J,McCORMICK S,MANTEUFFEL T,et al.AMG for higher-order discretizations of second-order elliptic PDES[C/OL]//Abstracts of the Eleventh Copper Mountain Conference on Multigrid Methods.Copper Mountain,CO.2003[2011-12-10].http://www.mgnet.org/mgnet/Conferences/CopperMtn03/Talks/ruge.pdf. [15] HEYS J J,MANTEUFFEL T A,MCORMICK S F,et al.Algebraic multigrid (AMG) for higher-order finite elements[J].Journal of Computational Physics,2005,204:520-532. [16] XIAO Ying-xiong,SHU Shi,ZHAO Tu-yan.A geometric-based algebraic multigrid for higher-order finite element equations in two dimensional linear elasticity[J].Numerical Linear Algebra with Applications,2009,16(7):535-559. [17] SCHO¨BERL J.Multigrid methods for a parameter dependent problem in primal variables[J].Numerische Mathematik,1999,84(23):97-119. [18] XIAO Ying-xiong,SHU Shi,ZHANG Hong-mei,et al.An algebraic multigrid method for nearly incompressible elasticity problem in two dimensions[J].Advances in Applied Mathematics and Mechanics,2009,1(1):69-88. [19] 欧阳媛.一种求解二维弹性可压和几乎不可压问题的代数多层网格法[D].湘潭:湘潭大学数学与计算机科学学院,2008. [20] WANG Lie-heng,HE Qi.On Locking finite element schemes for the pure displacement boundary value problem in the planar elasticity[J].MathematicaNumerica Sinica,2002,24(2):243-256. [21] 陈翠玲,李明,梁家梅,等.Wolfe线搜索下一类新的共轭梯度法及其收敛性[J].广西师范大学学报:自然科学版,2010,28(3):24-28. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |