广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (1): 15-21.

• • 上一篇    下一篇

弹性力学问题Locking-free有限元离散系统的两水平方法

张红梅1, 肖映雄2, 欧阳媛3   

  1. 1.湖南工业大学理学院,湖南株洲412007;
    2.湘潭大学土木工程与力学学院,湖南湘潭411105;
    3.湖南华菱涟源钢铁有限公司,湖南娄底417009
  • 收稿日期:2012-01-09 出版日期:2012-01-20 发布日期:2018-12-03
  • 通讯作者: 肖映雄(1970—),男(苗族),湖南城步人,湘潭大学教授,博士。E-mail:xyx610xyx@yahoo.com.cn
  • 基金资助:
    国家自然科学基金资助项目(10972191);湖南省教育厅一般项目(11C0411)

A Two-Level Method for Locking-free Finite Element Discretizationin Linear Elasticity

ZHANG Hong-mei1, XIAO Ying-xiong2, OUYANG Yuan3   

  1. 1.School of Science,Hunan University of Technology,Zhuzhou Hunan 412007,China;
    2.College of Civil Engineering and Mechanics,Xiangtan University,XiangtanHunan 411105,China;
    3.Hunan Valin Lianyuan Iron and Steel Company Limited,Loudi Hunan 417009,China
  • Received:2012-01-09 Online:2012-01-20 Published:2018-12-03

摘要: 高次协调元能有效克服弹性力学问题的闭锁(Locking)现象,称这种单元为无闭锁(Locking-free)有限元,但它与线性元相比,往往需要更多的计算机存储单元,具有更高的计算复杂性。针对弹性力学问题Locking-free(四次)有限元离散系统的求解,本文通过分析四次有限元与二次有限元空间之间的关系,并利用有限元基函数的特殊性质,如紧支集性,建立一种以二次有限元(P2)为粗水平空间的两水平方法;然后,利用减缩积分方案,以P2/P0元作为四次元空间的粗水平空间,并结合有效的磨光算子,为Locking-free有限元离散系统设计具有更好计算效率和鲁棒性的求解方法。数值实验结果验证了算法的有效性。

关键词: 弹性力学问题, 高次元, 闭锁现象, 两水平法, 减缩积分

Abstract: Higher-order conforming finite elements can effectively overcome the poisson-Locking in linear elasticity,which is call and Locking-free finite elements.But when compared with the linear element,it often requiresmore computer storage and has a higher computational complexity.For the Locking-free(quartic) finite element discretization in linear elasticity,a general two-level method is proposed by analyzing the relationship between the quadraticfinite element space and the quartic finite element space and by taking advantage of the special nature of the finite element's basi functions,such as compactly supported.First,the quadratic element is chosen as the coarse level space.Second,by combining the selective reduced integration and some efficient smoothers,then,obtain the two-level method is obtained in which the element is chosen as the coarse level space for the Locking-free finite element discretization with better robustness and high efficiency.The numerical results show the efficiency of the resulting method.

Key words: elasticity problem, higher-order finite element, locking phenomenon, two-level method, selective reduced integration

中图分类号: 

  • O343
[1] BABUSKA I,SURI M.On locking and robustness in the finite element method[J].SIAM Journal on Numerical Analysis,1992,29:1261-1293.
[2] BABUSKA I,SURI M.Locking effects in the finite element approximation of elasticity problems[J].Numerische Ma-thematik,1992,62(1):439-463.
[3] ARNOLD D N.Discretization by finite elements of a model parameterdependent problem[J].Numerische Mathematik,1981,37(3):405-421.
[4] ARNOLD D N,FALK R S.A new mixed formulation for elasticity[J].Numerische Mathematik,1988,53(1):13-30.
[5] MORLEY M.A family of mixed finite elements for linear elasticity[J].Numerische Mathematik,1989,55(6):633-666.
[6] BRENNER S C,SUNG L Y.Linear finite element methods for planar linear elasticity[J].Mathematics of Computation,1992,59(200):321-338.
[7] WANG Lie-heng,HE Qi.A locking-free scheme of noncomforming rectagular finite element for the planar elasticity[J].Journal of Computational Mathematics,2004,22(5):641-650.
[8] LEE C O,LEE J W,SHEEN D W.A locking free nonconforming finite element method for planar linear elasticity[J].Advances in Computational Mathematics,2003,19(1):277-291.
[9] SCOTT L R,VOGELIUS M.Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials[J].RAIRO Math Modeling Numer Anal,1985,19(1):111-143.
[10] SCOTT L R,VOGELIUS M.Conforming finite element methods for imcompreeeible and nearly incompressible continua[M]//ENGQUIST B E,OSHER S,SOMERVILLE R C J.Large Scale Computations in Fluid Mechanics,Part 1:Lectures in AppliedMathematics Vol 22.Providence,RI:AMS,1985:221-244.
[11] ZIENKIEWICZ O C,TAYLOR R L,TOO J M.Reduced integration techniquein general analysis of plates and Shells[J].International Journal for Numerical Method in Engineering,1971,3(2):275-290.
[12] BRANDT A.Algebraic multigrid theory:the symmetric case[J].Applied Mathematics of Computation,1986,19(14):23-56.
[13] RUGE J W,STUBEN K.Algebraic multigrid,in Multigrid Methods[M].Philadelphia,PA:Society for Industrial and Applied Mathematics,1987.
[14] RUGE J,McCORMICK S,MANTEUFFEL T,et al.AMG for higher-order discretizations of second-order elliptic PDES[C/OL]//Abstracts of the Eleventh Copper Mountain Conference on Multigrid Methods.Copper Mountain,CO.2003[2011-12-10].http://www.mgnet.org/mgnet/Conferences/CopperMtn03/Talks/ruge.pdf.
[15] HEYS J J,MANTEUFFEL T A,MCORMICK S F,et al.Algebraic multigrid (AMG) for higher-order finite elements[J].Journal of Computational Physics,2005,204:520-532.
[16] XIAO Ying-xiong,SHU Shi,ZHAO Tu-yan.A geometric-based algebraic multigrid for higher-order finite element equations in two dimensional linear elasticity[J].Numerical Linear Algebra with Applications,2009,16(7):535-559.
[17] SCHO¨BERL J.Multigrid methods for a parameter dependent problem in primal variables[J].Numerische Mathematik,1999,84(23):97-119.
[18] XIAO Ying-xiong,SHU Shi,ZHANG Hong-mei,et al.An algebraic multigrid method for nearly incompressible elasticity problem in two dimensions[J].Advances in Applied Mathematics and Mechanics,2009,1(1):69-88.
[19] 欧阳媛.一种求解二维弹性可压和几乎不可压问题的代数多层网格法[D].湘潭:湘潭大学数学与计算机科学学院,2008.
[20] WANG Lie-heng,HE Qi.On Locking finite element schemes for the pure displacement boundary value problem in the planar elasticity[J].MathematicaNumerica Sinica,2002,24(2):243-256.
[21] 陈翠玲,李明,梁家梅,等.Wolfe线搜索下一类新的共轭梯度法及其收敛性[J].广西师范大学学报:自然科学版,2010,28(3):24-28.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发