广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (3): 136-141.

• • 上一篇    下一篇

蛋白质功能预测的蚁群优化算法

吴超, 钟一文   

  1. 福建农林大学计算机与信息学院,福建福州350002
  • 收稿日期:2011-05-10 出版日期:2011-08-20 发布日期:2018-12-03
  • 通讯作者: 钟一文(1968—),男(畲族),福建上杭人,福建农林大学教授,博士。E-mail:yiwenzhong@163.com
  • 基金资助:
    国家自然科学基金资助项目(30800713/C140102);福建省自然科学基金资助项目(2008J0316)

Protein Function Prediction Using Ant Colony Optimization Algorithm

WU Chao, ZHONG Yi-wen   

  1. College of Computer and Information Science,Fujian Agricultural and Forestry University,Fuzhou Fujian 350002,China
  • Received:2011-05-10 Online:2011-08-20 Published:2018-12-03

摘要: 预测蛋白质功能是后基因组时代最具挑战性的问题之一,在大规模数据下采用高性能的功能预测算法能够节省大量的实验时间和成本。利用基于蛋白质相互作用网络的全局优化模型,提出了蛋白质功能预测的蚁群优化算法,算法在考虑全局模型的同时还利用了网络的先验信息,提高了搜索效率,仿真结果表明,蚁群优化算法能够有效对蛋白质功能进行预测,并且对蛋白质相互作用网络中的假阳性、假阴性数据具有较高的容错能力。

关键词: 蛋白质相互作用网络, 功能预测, 蚁群优化算法, 全局优化模型

Abstract: Protein function prediction is one of the most challenging problems in the post-genome era.For high-throughput data,it can save time and cost considerably by using prediction algorithms with high performance.Using a global optimization model based on protein-protein interaction networks,anant colony optimization algorithm for protein function prediction is proposed.The proposed algorithm can use the benefits of global optimization model and the priori knowledge in the network simultaneously and improves its search efficiency.The simulation results show that the ant colony optimization has good performance on protein function prediction,and good fault-tolerant for false positive and false negative data in the protein-protein interaction network.

Key words: protein-protein interaction network, function prediction, ant colony optimization, global optimization model

中图分类号: 

  • Q811
[1] GAURAV P,VIPIN K,STEINBACH M.Computational approaches for proteinfunction prediction:a survey,TR 06-028[R].Twin Cities:Department of ComputerScience and Engineering,University of Minnesota,2006.
[2] 于建涛,郭茂祖,蔡禄.蛋白质相互作用及其网络预测方法研究进展[J].电子学报,2007,35(12A):1-7.
[3] BROWN M P S,GRUNDY W N,LIN D,et al.Knowledge-based analysis of microarray gene expression data by using support vector machines[J].Proc Natl Acad Sci USA,2000,97:262-267.
[4] 倪青山,王正志,王广云,等.基于贝叶斯网络和相互作用可信度的蛋白质功能预测方法[J].激光生物学报,2009,18(3):395-400.
[5] SCHWIKOWSKI B,UETZ P,FIELDS S.A network of protein-protein interactions in yeast[J].Nat Biotechnol,2000,18:1257-1261.
[6] VAZQUEZ A,FLAMMINI A,MARITAN A,et al.Global protein function prediction from protein-protein interaction networks[J].Nat Biotechnol,2003,21:697-700.
[7] NABIEVA E,JIM K,AGARWAL A,et al.Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps[J].Bioinformatics,2005,21:302-310.
[8] ZHAO Xing-ming,CHEN Luo-nan,AIHARA K.Gene function prediction using labeled and unlabeled data[J].BMC Bioinformatics,2008,9:57.
[9] SAMANTA M P,LIANG S D.Predicting protein functions from redundanciesin large-scale protein interaction networks[J].Proc Natl Acad Sci USA,2003,100:12579-12583.
[10] 卢宏超,石秋艳,石宝晨,等.基于蛋白质网络功能模块的蛋白质功能预测[J].生物化学与生物物理进展,2006,33(5):446-451.
[11] KIRKPATRICK S,GELETT C C,VECCHI M P.Optimization by simulated annealing[J].Science,1983,220:621-630.
[12] DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colonyof cooperating agent[J].IEEE Transaction on Systems,Man,and Cybernetics-PartB,1996,26(1):29-41.
[13] STUTZLE T,HOLGER H.MAX-MIN ant system[J].Future Generation Computer System,2000,16(8):889-914.
[14] RUEPP A,ZOLLNER A,MAIER D,et al.The FunCat,a functional annotation scheme for systematic classification of proteins from whole genomes[J].Nucleic Acids Research,2004,32(8):5539-5545.
[15] VAZQUEZ A.Protein function prediction[EB/OL].(2008-02-09)[2011-01-15].http://www.sns.ias.edu/~vazquez/pf.html.
[1] 许丹, 王爱荣, 李金铭. 基于茎区的神经网络方法预测RNA二级结构[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 142-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发