广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (3): 28-32.

• • 上一篇    下一篇

一类二阶常p-Laplace系统周期解的存在性

李传华1, 冯春华2   

  1. 1.广西师范大学研究生学院,广西桂林541004;
    2.广西师范大学数学科学学院,广西桂林541004
  • 收稿日期:2011-05-12 出版日期:2011-08-20 发布日期:2018-12-03
  • 通讯作者: 冯春华(1949—),男,广西荔浦人,广西师范大学教授,博士。E-mail:chfeng@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(10961005,11161051)

Periodic Solutions for Second-order Ordinary p-Laplacian System

LI Chuan-hua1, FENG Chun-hua2   

  1. 1.College of Graduate,Guangxi Normal University,Guilin Guangxi541004,China;
    2.College of Mathematical Sciences,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2011-05-12 Online:2011-08-20 Published:2018-12-03

摘要: Hamilton系统理论是经典而又现代化的研究领域,其广泛存在于数理科学,生命科学及社会科学等各个领域,特别是经典力学和场论中很多模型都以Hamilton系统的形式出现。本文通过应用临界点理论中的极小极大方法,研究一类常p-Laplace系统非平凡周期解的存在性,所得结构推广了二阶Hamilton系统的相关结果。

关键词: 周期解, 极小极大方法, 临界点, p-Laplace系统

Abstract: By using minimax methods in critical point theory,a new existence theorem of periodic solutions is obtained for a second-order ordinary p-Laplacian system.The result obtained generalizes some known works inthe literature.

Key words: periodic solution, minimax methods, critical point, ordinary p-Laplacian system

中图分类号: 

  • O189.1
[1] FEI Gui-hua.On periodic solutions of superquadratic Hamiltonian systems[J].Electron J Differential Equations,2002(8):1-12.
[2] LI Shu-jie,WILLEM M.Applications of local linking to critical point theory[J].J Math Anal Appl,1995,189(1):6-32.
[3] MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems[M].New York:Springer-Verlag,1989.
[4] RABINOWITZ P H.Minimax methods in critical point theory with applications to differential equations[M].Providence,RI:Amer Math Soc,1986.
[5] SCHECHTER M.Periodic non-autonomous second order dynamical systems[J].J Differential Equations,2006,223(2):290-302.
[6] SCHECHTER M.Periodic solutions of second order non-autonomous dynamical systems[J].Boundary Value Problems,2006(1):1-9.
[7] TAO Zhu-lian,TANG Chun-lei.Periodic solutions of second-orderHamiltonian systems[J].J Math Anal Appl,2004,293(2):435-445.
[8] TAO Zhu-lian,YAN Shang-an,WU Song-lin.Periodic solutions for aclass of superquadratic Hamiltonian systems[J].J Math Anal Appl,2007,331(1):152-158.
[9] TANG Chun-lei,WU Xing-ping.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285(1):8-16.
[10] TIAN Yu,GE Wei-gao.Periodic solutions of non-autonomous second order systems with
p-Laplacian[J].Nonlinear Anal,2007,66(1):192-203.
[11] XU Bo,TANG Chun-lei.Some existence results on periodic solutions of ordinary
p-Laplacian systems[J].J Math Anal Appl,2007,333(2):1228-1236.
[12] AMBROSETTI A,RABINOWITZ P H.Dual variational methods in critical point theory and applications[J].J Funct Anal,1973,14(4):349-381.
[1] 吕小俊, 赵凯宏, 李睿. 非自治离散型浮游生物系统的多个正周期解[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 66-73.
[2] 章美月. 关于电子束聚焦系统模型的一些新结果[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 38-44.
[3] 韩彩虹, 李略, 黄荣里. 差分方程xn+1=pn+xnxn-1的动力学性质[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 44-47.
[4] 薛晋栋, 冯春华. 一类时滞脉冲微积分方程的正概周期解[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发