|
广西师范大学学报(自然科学版) ›› 2011, Vol. 29 ›› Issue (3): 28-32.
李传华1, 冯春华2
LI Chuan-hua1, FENG Chun-hua2
摘要: Hamilton系统理论是经典而又现代化的研究领域,其广泛存在于数理科学,生命科学及社会科学等各个领域,特别是经典力学和场论中很多模型都以Hamilton系统的形式出现。本文通过应用临界点理论中的极小极大方法,研究一类常p-Laplace系统非平凡周期解的存在性,所得结构推广了二阶Hamilton系统的相关结果。
中图分类号:
[1] FEI Gui-hua.On periodic solutions of superquadratic Hamiltonian systems[J].Electron J Differential Equations,2002(8):1-12. [2] LI Shu-jie,WILLEM M.Applications of local linking to critical point theory[J].J Math Anal Appl,1995,189(1):6-32. [3] MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems[M].New York:Springer-Verlag,1989. [4] RABINOWITZ P H.Minimax methods in critical point theory with applications to differential equations[M].Providence,RI:Amer Math Soc,1986. [5] SCHECHTER M.Periodic non-autonomous second order dynamical systems[J].J Differential Equations,2006,223(2):290-302. [6] SCHECHTER M.Periodic solutions of second order non-autonomous dynamical systems[J].Boundary Value Problems,2006(1):1-9. [7] TAO Zhu-lian,TANG Chun-lei.Periodic solutions of second-orderHamiltonian systems[J].J Math Anal Appl,2004,293(2):435-445. [8] TAO Zhu-lian,YAN Shang-an,WU Song-lin.Periodic solutions for aclass of superquadratic Hamiltonian systems[J].J Math Anal Appl,2007,331(1):152-158. [9] TANG Chun-lei,WU Xing-ping.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285(1):8-16. [10] TIAN Yu,GE Wei-gao.Periodic solutions of non-autonomous second order systems with p-Laplacian[J].Nonlinear Anal,2007,66(1):192-203. [11] XU Bo,TANG Chun-lei.Some existence results on periodic solutions of ordinary p-Laplacian systems[J].J Math Anal Appl,2007,333(2):1228-1236. [12] AMBROSETTI A,RABINOWITZ P H.Dual variational methods in critical point theory and applications[J].J Funct Anal,1973,14(4):349-381. |
[1] | 吕小俊, 赵凯宏, 李睿. 非自治离散型浮游生物系统的多个正周期解[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 66-73. |
[2] | 章美月. 关于电子束聚焦系统模型的一些新结果[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 38-44. |
[3] | 韩彩虹, 李略, 黄荣里. 差分方程xn+1=pn+xnxn-1的动力学性质[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 44-47. |
[4] | 薛晋栋, 冯春华. 一类时滞脉冲微积分方程的正概周期解[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 48-53. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |