|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 43-56.doi: 10.16088/j.issn.1001-6600.2024092401
黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟*, 李廷会
HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin*, LI Tinghui
摘要: 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。
中图分类号: TN911.7
| [1] LAZAROU I, NIKOLOPOULOS S, PETRANTONAKIS P C, et al. EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: a novel approach of the 21st Century[J]. Frontiers in Human Neuroscience, 2018, 12: 14. DOI: 10.3389/fnhum.2018.00014. [2]邱爽,杨帮华,陈小刚,等.非侵入式脑—机接口编解码技术研究进展[J].中国图象图形学报,2023,28(6):1543-1566. DOI: 10.11834/jig.230031. [3]ZHANG J C, WANG M. A survey on robots controlled by motor imagery brain-computer interfaces[J]. Cognitive Robotics, 2021, 1: 12-24. DOI: 10.1016/j.cogr.2021.02.001. [4]PFURTSCHELLER G, LOPES DA SILVA F H. Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clinical Neurophysiology, 1999, 110(11): 1842-1857. DOI: 10.1016/S1388-2457(99)00141-8. [5]ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35(20): 14681-14722. DOI: 10.1007/s00521-021-06352-5. [6]BLANKERTZ B, TOMIOKA R, LEMM S, et al. Optimizing spatial filters for robust EEG single-trial analysis[J]. IEEE Signal Processing Magazine, 2008, 25(1): 41-56. DOI: 10.1109/MSP.2008.4408441. [7]潘林聪,王坤,许敏鹏,等.面向运动意图解码的共空间模式及其扩展算法研究综述[J].中国生物医学工程学报,2022,41(5):577-588. DOI: 10.3969/j.issn.0258-8021.2022.05.007. [8]ANG K K, CHIN Z Y, ZHANG H H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Los Alamitos, CA: IEEE Computer Society, 2008: 2390-2397. DOI: 10.1109/IJCNN.2008.4634130. [9]KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500. DOI: 10.1137/07070111X. [10]BARACHANT A, BONNET S, CONGEDO M, et al. Riemannian geometry applied to BCI classification[C]// Latent Variable Analysis and Signal Separation. Berlin: Springer, 2010: 629-636. DOI: 10.1007/978-3-642-15995-4_78. [11]徐慧,何宏,张慧敏,等.黎曼流形切平面空间中运动想象脑电信号的迁移学习[J].中国生物医学工程学报,2023,42(6):659-667. DOI: 10.3969/j.issn.0258-8021.2023.06.003. [12]ROSIPAL R, ROTŤÁKOVÁ Z, TREJO L J. Tensor decomposition of human narrowband oscillatory brain activity in frequency, space and time[J]. Biological Psychology, 2022, 169: 108287. DOI: 10.1016/j.biopsycho.2022.108287. [13]黄守麟.面向运动想象脑电信号的张量空频分析方法研究[D].哈尔滨:哈尔滨工业大学,2021. DOI: 10.27061/d.cnki.ghgdu.2021.004962. [14]TANG X L, YANG C Q, SUN X, et al. Motor imagery EEG decoding based on multi-scale hybrid networks and feature enhancement[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1208-1218. DOI: 10.1109/TNSRE.2023.3242280. [15]SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391-5420. DOI: 10.1002/hbm.23730. [16]LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5): 056013. DOI: 10.1088/1741-2552/aace8c. [17]MANE R, ROBINSON N, VINOD A P, et al. A multi-view CNN with novel variance layer for motor imagery brain computer interface[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Los Alamitos, CA: IEEE Computer Society, 2020: 2950-2953. DOI: 10.1109/EMBC44109.2020.9175874. [18]BANG J S, LEE M H, FAZLI S, et al. Spatio-spectral feature representation for motor imagery classification using convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(7): 3038-3049. DOI: 10.1109/TNNLS.2020.3048385. [19]SAUSENG P, KLIMESCH W. What does phase information of oscillatory brain activity tell us about cognitive processes?[J]. Neuroscience & Biobehavioral Reviews, 2008, 32(5): 1001-1013. DOI: 10.1016/j.neubiorev.2008.03.014. [20]HELFRICH R F, KNEPPER H, NOLTE G, et al. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception[J]. Human Brain Mapping, 2016, 37(11): 4099-4111. DOI: 10.1002/hbm.23298. [21]POURALI H, OMRANPOUR H. CSP-Ph-PS: learning CSP-phase space and poincare sections based on evolutionary algorithm for EEG signals recognition[J]. Expert Systems with Applications, 2023, 211: 118621. DOI: 10.1016/j.eswa.2022.118621. [22]LACHAUX J P, RODRIGUEZ E, MARTINERIE J, et al. Measuring phase synchrony in brain signals[J]. Human Brain Mapping, 1999, 8(4): 194-208. DOI: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C. [23]CHEN J C, CUI Y G, WANG H, et al. Deep learning approach for detection of unfavorable driving state based on multiple phase synchronization between multi-channel EEG signals[J]. Information Sciences, 2024, 658: 120070. DOI: 10.1016/j.ins.2023.120070. [24]钟文潇,安兴伟,狄洋,等.基于脑电信号的身份特征提取方法研究综述[J].生物医学工程学杂志,2021,38(6):1203-1210. DOI: 10.7507/1001-5515.202102057. [25]XU G Y, WANG Z Y, XU T H, et al. Engagement recognition using a multi-domain feature extraction method based on correlation-based common spatial patterns[J]. Applied Sciences, 2023, 13(21): 11924. DOI: 10.3390/app132111924. [26]FAN C C, YANG B H, LI X O, et al. Temporal-frequency-phase feature classification using 3D-convolutional neural networks for motor imagery and movement[J]. Frontiers in Neuroscience, 2023, 17: 1250991. DOI: 10.3389/fnins.2023.1250991. [27]CHAKRABORTY B, GHOSH L, KONAR A. Designing phase-sensitive common spatial pattern filter to improve brain-computer interfacing[J]. IEEE Transactions on Bio-Medical Engineering, 2020, 67(7): 2064-2072. DOI: 10.1109/tbme.2019.2954470. [28]HUANG S L, CAI G Q, WANG T, et al. Amplitude-phase information measurement on Riemannian manifold for motor imagery-based BCI[J]. IEEE Signal Processing Letters, 2021, 28: 1310-1314. DOI: 10.1109/LSP.2021.3087099. [29]TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2015: 4489-4497. DOI: 10.1109/ICCV.2015.510. [30]HO J, SALIMANS T, GRITSENKO A, et al. Video diffusion models[C]// Advances in Neural Information Processing Systems 35 (NeurIPS 2022). Red Hook: Curran Associates, Inc., 2022: 8633-8646. [31]JAMIOŁKOWSKI A. Linear transformations which preserve trace and positive semidefiniteness of operators[J]. Reports on Mathematical Physics, 1972, 3(4): 275-278. DOI: 10.1016/0034-4877(72)90011-0. [32]LEE C Y, HASEGAWA H, GAO S C. Complex-valued neural networks: a comprehensive survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(8): 1406-1426. DOI: 10.1109/JAS.2022.105743. [33]GOLIK P, DOETSCH P, NEY H. Cross-entropy vs. squared error training: a theoretical and experimental comparison[C]// Proceedings of the Interspeech 2013. Baixas: International Speech Communications Association, 2013: 1756-1760. DOI: 10.21437/Interspeech.2013-436. [34]SHI G J, SHANECHI M M, AARABI P. On the importance of phase in human speech recognition[J]. IEEE Transactions on Audio Speech and Language Processing, 2006, 14(5): 1867-1874. DOI: 10.1109/TSA.2005.858512. [35]ARJOVSKY M, SHAH A, BENGIO Y. Unitary evolution recurrent neural networks[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR, 2016: 1120-1128. DOI: 10.5555/3045390.3045509. [36]TRABELSI C, BILANIUK O, ZHANG Y, et al. Deep complex networks[EB/OL]. (2018-02-25)[2024-09-01]. https://arxiv.org/abs/1705.09792. DOI: 10.48550/arXiv.1705.09792. [37]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [38]KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30)[2024-09-01]. https://arxiv.org/abs/1412.6980. DOI: 10.48550/arXiv.1412.6980. [39]TANGERMANN M, MÜLLER K R, AERTSEN A, et al. Review of the BCI competition IV[J]. Frontiers in Neuroscience, 2012, 6: 55. DOI: 10.3389/fnins.2012.00055. [40]LEE M H, KWON O Y, KIM Y J, et al. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy[J]. GigaScience, 2019, 8(5): giz002. DOI: 10.1093/gigascience/giz002. [41]BLANKERTZ B, LEMM S, TREDER M, et al. Single-trial analysis and classification of ERP components: a tutorial[J]. NeuroImage, 2011, 56(2): 814-825. DOI: 10.1016/j.neuroimage.2010.06.048. [42]JAMIESON A R, GIGER M L, DRUKKER K, et al. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE[J]. Medical Physics, 2010, 37(1): 339-351. DOI: 10.1118/1.3267037. [43]DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2): 224-227. DOI: 10.1109/TPAMI.1979.4766909. |
| [1] | 汤亮, 陈博文, 牛一森, 马荣庚. 基于YOLOv8的雾天车辆行人实时检测方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 72-83. |
| [2] | 梁胤杰, 南新元, 蔡鑫, 李云鹏, 勾海光. 基于数据增广与改进YOLOv8的桥梁缺陷检测[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 84-97. |
| [3] | 王凯明, 周海燕, 郭家梁, 杨孝敬, 王刚, 钟宁. 基于统计分布熵的抑郁症脑电信号分析[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 29-35. |
|
||
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |