|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 37-48.doi: 10.16088/j.issn.1001-6600.2023021901
梁正友1,2*, 蔡俊民1, 孙宇1, 陈磊1
LIANG Zhengyou1,2*, CAI Junmin1, SUN Yu1, CHEN Lei1
摘要: 针对提高点云分类性能和鲁棒性的需求,本文提出将残差动态图卷积与特征强化相结合的点云分类网络。采用多方向编码方法,在局部邻域中心点的空间多方向上选取近邻点,丰富点云特征;通过残差动态图卷积提取特征,以残差结构对局部特征和全局特征进行深度融合,有效缓解网络退化问题;构造强化空间注意力模块,使得网络在空间域中学习自适应地为不同邻域特征分配权重,增强有用特征,并抑制冗余特征;使用高低层次链接,保留更多特性信息。实验表明:本文模型在ModelNet10、ModelNe40数据集上的总体分类精度分别达到94.81%、93.62%,分类精度更高,鲁棒性更强,优于现有先进方法。
中图分类号: TP391.41
[1] MIRZAEI K, ARASHPOUR M, ASADI E, et al. 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review[J]. Advanced Engineering Informatics, 2022, 51: 101501. DOI: 10.1016/j.aei.2021.101501. [2] WANG W G, LAI Q X, FU H Z, et al. Salient object detection in the deep learning era: an in-depth survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3239-3259. DOI: 10.1109/TPAMI.2021.3051099. [3] 朱勇建, 罗坚, 秦运柏, 等. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21-31. DOI: 10.16088/j.issn.1001-6600.2020.06.003. [4] 薛其威, 伍锡如. 基于多模态特征融合的无人驾驶系统车辆检测[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 37-48. DOI: 10.16088/j.issn.1001-6600.2021072002. [5] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2015: 945-953. DOI: 10.1109/ICCV.2015.114. [6] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Los Alamitos, CA: IEEE Computer Society, 2015: 922-928. DOI: 10.1109/IROS.2015.7353481. [7] QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 77-85. DOI: 10.1109/CVPR.2017.16. [8] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. [9] ZHAO H S, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2019: 5560-5568. DOI: 10.1109/CVPR.2019.00571. [10] YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 5588-5597. DOI: 10.1109/CVPR42600.2020.00563. [11] LI J X, CHEN B M, LEE G H. SO-Net: self-organizing network for point cloud analysis[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 9397-9406. DOI: 10.1109/CVPR.2018.00979. [12] LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on X-transformed points[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates Inc., 2018: 828-838. [13] WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 9613-9622. DOI: 10.1109/CVPR.2019.00985. [14] LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 8887-8896. DOI: 10.1109/CVPR.2019.00910. [15] 顾砾, 季怡, 刘纯平. 基于多模态特征融合的三维点云分类方法[J]. 计算机工程, 2021, 47(2): 279-284. DOI: 10.19678/j.issn.1000-3428.0057147. [16] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308. [17] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 29-38. DOI: 10.1109/CVPR.2017.11. [18] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. DOI: 10.1145/3326362. [19] LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 1797-1806. DOI: 10.1109/CVPR42600.2020.00187. [20] ZHANG K E, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[EB/OL]. (2019-04-22)[2023-02-19]. https://arxiv.org/abs/1904.10014. DOI: 10.48550/arXiv.1904.10014. [21] 梁振明, 翟正利, 周炜. 基于多尺度动态图卷积网络的3D点云分类[J]. 计算机应用与软件, 2021, 38(5): 263-267, 306. DOI: 10.3969/j.issn.1000-386x.2021.05.043. [22] 魏天琪, 郑雄胜. 基于深度学习的三维点云分类方法研究[J]. 计算机应用研究, 2022, 39(5): 1289-1296. DOI: 10.19734/j.issn.1001-3695.2021.10.0469. [23] YANG J C, ZHANG Q, NI B B, et al. Modeling point clouds with self-attention and Gumbel subset sampling[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 3318-3327. DOI: 10.1109/CVPR.2019.00344. [24] 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的点云分类分割模型[J/OL]. 计算机工程与应用: 1-10[2023-02-19]. http://kns.cnki.net/kcms/detail/11.2127.TP.20221019.1414.006.html. [25] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2015: 1912-1920. DOI: 10.1109/CVPR.2015.7298801. [26] 王文曦, 李乐林. 深度学习在点云分类中的研究综述[J]. 计算机工程与应用, 2022, 58(1): 26-40. DOI: 10.3778/j.issn.1002-8331.2105-0200. [27] JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: a SIFT-like network module for 3d point cloud semantic segmentation[EB/OL]. (2018-07-02)[2023-02-19]. https://arxiv.org/abs/1807.00652. DOI: 10.48550/arXiv.1807.00652. [28] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
[1] | 邹艳丽, 汪洋, 刘树生, 姚飞. 带有邻居度信息的容量负载模型下电网级联故障研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 27-36. |
[2] | 范瑞,蒋品群,曾上游,夏海英,廖志贤,李鹏. 多尺度并行融合的轻量级卷积神经网络设计[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 50-59. |
[3] | 唐堂, 魏承赟, 罗晓曙, 丘森辉. 基于附加惯性项人群搜索算法的四旋翼无人机姿态控制研究[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 12-19. |
[4] | 许远静, 胡维平. 基于随机森林的不同程度病态嗓音识别[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 34-41. |
[5] | 钟海鑫, 丘森辉, 罗晓曙, 唐堂, 杨力, 赵帅. 基于附加惯性项BP神经网络的四旋翼无人机姿态控制研究[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 24-31. |
[6] | 钟海鑫,罗晓曙,赵帅,杨力,唐堂. 基于改进精英蚁群系统算法的四旋翼无人机 姿态控制研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 85-92. |
[7] | 陈锦, 罗晓曙. 一种新的基于小波变换的QPSK信号解调方法[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 35-45. |
[8] | 熊顺清, 周卫红. 一种基于非采样Contourlet变换的图像水印算法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 195-199. |
[9] | 李勇, 贾贞. 离散混沌系统在保密通信中的应用[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 15-19. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |