|
广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (4): 59-66.doi: 10.16088/j.issn.1001-6600.2018.04.008
姜影星, 黄文念*
JIANG Yingxing, HUANG Wennian*
摘要: 在V、K和f的一些假设下,本文主要研究非线性薛定谔-麦克斯韦方程的基态解:
-Δu+V(x)u+K(x)φu=f(x,u), x∈R3,
-Δφ=K(x)u2, x∈R3。
首先利用山路定理得出薛定谔-麦克斯韦方程的非平凡解,然后证得泛函在Nehari流形上可达,最后证明薛定谔-麦克斯韦方程的基态解。本文弱化了已有文献中的某个条件,推广了已有文献中高能解的结论。
中图分类号:
[1] BENCI V,FORTUNATO D.An eigenvalue problem for the Schrödinger-Maxwell equations[J].Topological Methods in Nonlinear Analysis,1998,11(2):283-293.DOI:10.12775/TMNA.1998.019. [2] D′APRILE T,MUGNAI D.Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations[J].Proceedings of the Royal Society of Edinburgh Section A: Mathematics,2004,134(5):893-906. DOI:10.1017/S030821050000353X. [3] CHEN Shangjie,TANG Chunlei.High energy solutions for the superlinear Schrödinger-Maxwell equations[J].Nonlinear Analysis: Theory, Methods and Applications,2009,71(10):4927-4934.DOI:10.1016/j.na.2009.03.050. [4] LIU Zhisu,GUO Shangjiang,ZHANG Ziheng.Existence of ground state solutions for the Schrödinger-Poisson systems[J].Applied Mathematics and Computation,2014,244:312-323.DOI:10.1016/j.amc.2014.07.008. [5] HUANG Wennian,TANG Xianhua.Ground-state solutions for asymptotically cubic Schrödinger-Maxwell equations[J].Mediterranean Journal of Mathematics,2016,13(5):3469-3481.DOI:10.1007/s00009-016-0697-5. [6] SUN Jijiang,MA Shiwang.Ground state solutions for some Schrödinger-Poisson systems with periodic potentials[J].Journal of Differential Equations,2016,260(3):2119-2149.DOI:10.1016/j.jde.2015.09.057. [7] CHEN Peng,TIAN Cai.Infinitely many solutions for Schrödinger-Maxwell equations with indefinite sign subquadratic potentials[J]. Applied Mathematics and Computation,2014,226:492-502.DOI:10.1016/j.amc.2013.10.069. [8] 陈尚杰.一类非齐次Schrödinger方程非平凡解的存在性[J].西南大学学报(自然科学版),2015,37(2):55-59.DOI:10.13718/j.cnki.xdzk.2015.02.010. [9] BAO Gui.Infinitely many small solutions for a sublinear Schrödinger-Poisson system with sign-changing potential[J].Computer and Mathematics with Applications,2016,71(10):2082-2088.DOI:10.1016/j.camwa.2016.04.006. [10] 方立婉,黄文念,谢苏静.一类非线性薛定谔-麦克斯韦方程在R3的基态解[J].数学的实践与认识,2017,47(18):267-273. [11] 姜影星,黄文念.非线性薛定谔-麦克斯韦方程基态解的存在性[J].数学的实践与认识,2018,48(5):248-255. [12] LI Qingdong,SU Han,WEI Zhongli.Existence of infinitely many large solutions for the nonlinear Schrödinger-Maxwell equations[J]. Nonlinear Analysis: Theory, Methods and Applications,2010,72(11):4264-4270.DOI:10.1016/j.na.2010.02.002. [13] YANG Minghai,HAN Zhiqing. Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems[J].Nonlinear Analysis:Real World Applications,2012,13(3):1093-1101.DOI:10.1016/j.nonrwa.2011.07.008. [14] YOSIDA K.Functional Analysis[M]. 6th ed. Berlin:Springer-Verlag,1999. [15] BARTOLO P,BENCI V,FORTUNATO D.Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity[J].Nonlinear Analysis: Theory, Methods and Applications,1983,7(9):981-1012.DOI:10.1016/0362-546X(83)90115-3. [16] COSTA D G,MIYAGAKI O H.Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[J].Journal of Mathematical Analysis and Applications,1995,193(3):737-755.DOI:10.1006/jmaa.1995.1264. [17] RABINOWITZ P H.Minimax methods in critical point theory with applications to differential equations[M].Providence, RI: Amer Math Soc, 1986. [18] WILLEM M.Minimax theorems[M]. Boston: Birkhäuser, 1996.DOI:10.1007/978-1-4612-4146-1. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |