广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (4): 51-58.doi: 10.16088/j.issn.1001-6600.2018.04.007

• • 上一篇    下一篇

社会网络中基于信任的LDA主题模型领域专家推荐

刘电霆1*, 吴丽娜2   

  1. 1.桂林理工大学机械与控制工程学院,广西桂林541004;
    2.桂林理工大学信息科学与工程学院,广西桂林541004
  • 收稿日期:2017-06-26 发布日期:2018-10-20
  • 通讯作者: 刘电霆(1966—),男,江西吉安人,桂林理工大学教授,博士。E-mail:dlinac@163.com
  • 基金资助:
    国家自然科学基金(51165004);广西科学研究与技术开发计划(桂科攻1598007-15)

Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust

LIU Dianting1*, WU Lina2   

  1. 1. College of Mechanical and Control Engineering,Guilin University of Technology,Guilin Guangxi 541004,China;
    2. College of Information Science and Engineering,Guilin University of Technology,Guilin Guangxi 541004,China
  • Received:2017-06-26 Published:2018-10-20

摘要: 随着Web 2.0技术的发展,社会网络为人们进行交流和协作提供了新的便捷平台。面对网络信息过载问题,在海量的信息中找到自己感兴趣并信任的领域专家,参考专家意见做抉择,变得十分困难。本文提出一种基于信任的LDA(latent Dirichlet allocation)主题模型社会网络中领域专家推荐方法, 实现了基于用户信任的领域专家个性化推荐。该方法以LDA主题模型为基础,综合考虑社会网络结构、用户间的信任关系及社会影响力,弥补了传统专家推荐方法只考虑专家特征,导致专家推荐精度不高及推荐结果模式化的不足。最后通过实验验证了该方法的可行性和有效性。

关键词: 社会网络, 信息过载, 主题模型, 个性化推荐, 用户信任

Abstract: With the development of Web 2.0 technology, the social network has provided a new and convenient platform to communicate and collaborate for people. Faced with the problem of network information overloaded, it is very difficult to find the experts who are interested in the topic and are reliable to make decisions based on experts’ opinions. In this paper, domain experts recommendation in social network based on the LDA theme model of trust method is proposed. The personalized recommendation of domain experts for the user trust is implemented. The method is based on the topic model (LDA), the social network structure, the users’ trust relationship and social influence. It makes up the deficiency of the traditional experts recommendation methods that only involve expert’s characteristics which lead to low recommendation accuracy and the problem of the pattern of recommended results. Finally, the feasibility and effectiveness of the method are verified by experiments.

Key words: social network, information overload, theme model, personalized recommendation, user trust

中图分类号: 

  • TP393.4
[1] 李江,李东,冯培桦,等.基于专长吻合度、学术影响力与社会关联值的专家推荐模型研究[J].情报学报,2017, 36(4):338-345.DOI:10.3772/j.issn.1000-0135.2017.04.002.
[2] 瞿辉,王菲菲.基于知识关联网络的作者学术影响力评价研究[J].情报杂志,2016,35(7):190-195. D0I:10.3969/j.issn.1002-1965.2016.07.032.
[3] XIE Xiaoqin,LI Yijia,ZHANG Zhiqiang,et al.A topic-specific contextual expert finding method in social network[C]//LI Feifei,SHIM K,ZHANG Kai,et al.Web Technologies and Applications:Lecture Notes in Computer Science vol 9931.Cham,Switzerland:Springer International Publishing AG,2016:292-303.DOI: 10.1007/978-3-319-45814-4_24.
[4] LIN Shuyi,HONG Wenxing,WANG Dingding,et al.A survey on expert finding techniques[J].Journal of Intelligent Information Systems,2017,49(2):255-279.DOI:10.1007/s10844-016-0440-5.
[5] 龚凯乐,成颖.基于“问题-用户”的网络问答社区专家发现方法研究[J].图书情报工作, 2016, 60(24):115-121. DOI:10.13266/j.issn.0252-3116.2016.24.016.
[6] YENITERZI R,CALLAN J.Constructing effective and efficient topic-specific authority networks for expert finding in social media[C]//Proceedings of the first international workshop on Social media retrieval and analysis.New York:ACM Press,2014:45-50.DOI:10.1145/2632188.2632208.
[7] 杨文显.项目评审专家协同推荐方法的研究及应用[D].杭州:杭州电子科技大学,2016.
[8] 王书海.协同过滤推荐算法研究及MapReduce实现[D].成都:四川师范大学,2016.
[9] SHROT T,ROSENFELD A,GOLBECK J, et al.Crisp: an interruption management algorithm based on collaborative filtering[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York:ACM Press,2014:3035-3044.DOI:10.1145/2556288.2557109.
[10] 翟伯荫.社交网络中领域专家的识别研究[D].上海:华东师范大学,2015.
[11] 杜静.社会网络中基于信任的推荐方法设计与实现[D].哈尔滨:黑龙江大学,2015.
[12] DING Junmei,CHEN Yan,LI Xin,et al.Unsupervised expert finding in social network for personalized recommendation[C]//CUI Bin,ZHANG Nan,XU Jianliang,et al.Web-Age Information Management:Lecture Notes in Computer Science vol 9658.Cham,Switzerland:Springer International Publishing AG,2016:257-271.DOI: 10.1007/978-3-319-39937-9_20.
[13] VERGNE M,SUSI A.Expert finding using Markov networks in open source communities[C]//JARKE M, MYLOPOULOS J,QUIX C,et al.Advanced Information Systems Engineering:Lecture Notes in Computer Science vol 8484.Cham,Switzerland:Springer International Publishing AG,2014:196-210.DOI:10.1007/978-3-319-07881-6_14.
[14] 朱丽中,徐秀娟,刘宇.基于项目和信任的协同过滤推荐算法[J].计算机工程,2013,39(1):58-62,66.DOI:10. 3969/j.issn.1000-3428.2013.01.012.
[15] 汪俊,岳峰,王刚,等.科研社交网络中基于链接预测的专家推荐研究[J].情报杂志,2015,34(6):151-157. DOI:10.3969/j.issn.1002-1965.2015.06.027.
[16] LIU Jian,JIA Bei,XU Hao,et al.A topic rank based document priors model for expert finding[C]//FEI Minrui,MA Shiwei,LI Xin,et al.Advanced Computational Methods in Life System Modeling and Simulation: Communications in Computer and Information Science vol 761.Singapore:Springer,2017:334-341.DOI: 10.1007/978-981-10-6370-1_33.
[17] 姜文君.在线社会网络中个性化信任评价基础与应用研究[D].长沙:中南大学,2014.
[18] DONG Yuxin,ZHAO Chunhui,CHENG Weijie,et al.A personalized recommendation algorithm with user trust in social network[C]//CHE Wanxiang,HAN Qilong,WANG Hongzhi,et al.Social Computing:Proceedings of Second International Conference of Young Computer Scientists,Engineers and Educators.Singapore: Springer,2016:63-76.DOI: 10.1007/978-981-10-2053-7_7.
[19] LI Yanyan,MA Shaoqian,HUANG Ronghuai.Social context analysis for topic-specific expert finding in online learning communities[M]//CHANG Maiga,LI Yanyan.Smart Learning Environments:Lecture Notes in Educational Technology.Berlin:Springer,2015:57-74.DOI:10.1007/978-3-662-44447-4_4.
[20] 邸亮,杜永萍.LDA模型在微博用户推荐中的应用[J].计算机工程,2014,40(5):1-6,11.DOI:10.3969/j.issn. 1000-3428.2014.05.001.
[21] 仇丽青,陈卓艳,丁长青,等.基于改进LDA主题模型的社会网络话题发现算法iMLDA[J].情报科学,2016,34(9): 115-118,133.DOI:10.13833/j.cnki.is.2016.09.023.
[22] ZHANG Zhijun,XU Gongwen,ZHANG Pengfei,et al.Personalized recommendation algorithm for social networks based on comprehensive trust[J].Applied Intelligence,2017,47(3):659-669.DOI:10.1007/s10489-017-0928-x.
[23] 李德新,钟俊.一种改进用户相似度的协同过滤推荐算法[J].数字技术与应用,2017(2):158-159.DOI:10.3969/j.issn.1007-9416.2017.02.099.
[24] 关鹏,王曰芬,傅柱.不同语料下基于LDA主题模型的科学文献主题抽取效果分析[J].图书情报工作, 2016,60(2):112-121.DOI:10.13266/j.issn.0252-3116.2016.02.018.
[25] 孙志滨.LDA模型的研究及其在推荐系统中的应用[D].杭州:浙江大学,2016.
[26] 李湛.基于社会信任网络的协同过滤推荐方法研究[D].大连:大连理工大学,2013.
[27] 郭文健,高仲合,段婷婷.基于信任网络的个性化推荐算法[J].电子技术,2016(12):65-67.DOI:10.3969/j.issn.1000-0755.2016.12.020.
[28] 靳健,杨海慈,李凝,等.基于主题契合度的专家推荐模型研究[J].数字图书馆论坛,2017(4):47-55.DOI:10.3772/j.issn.1673-2286.2017.04.007.
[29] 赵千,耿骞,靳健,等.一种面向主题覆盖度与权威度的评审专家推荐模型研究[J].图书情报工作,2017,61(1): 80-88.DOI:10.13266/j.issn.0252-3116.2017.01.010.
[1] 葛丽娜. 基于k-同构和局部随机化的隐私保护方法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 1-8.
[2] 宋俊, 韩啸宇, 黄宇, 黄廷磊, 付琨. 一种面向实体的演化式多文档摘要生成方法[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 36-41.
[3] 李志欣, 陈宏朝, 吴王景莉, 周生明. 基于概率主题建模的图像语义学习与检索[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发