广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (4): 27-33.doi: 10.16088/j.issn.1001-6600.2018.04.004

• • 上一篇    下一篇

基于随机森林的锂离子电池荷电状态估算

韦振汉, 宋树祥*, 夏海英   

  1. 广西师范大学电子工程学院,广西桂林541004
  • 收稿日期:2017-09-10 发布日期:2018-10-20
  • 通讯作者: 宋树祥(1970—),男,湖南双峰人,广西师范大学教授,博士。E-mail:songshuxiang@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(61361011)

State-of-charge Estimation Using Random Forest for Lithium Ion Battery

WEI Zhenhan, SONG Shuxiang*, XIA Haiying   

  1. College of Electronic Engineering,Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2017-09-10 Published:2018-10-20

摘要: 荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池温度作为模型的训练输入,相对应的SOC作为模型的训练输出;然后使用随机森林算法进行模型训练;最后将训练模型应用于电池SOC估计。实验结果表明,随机森林回归算法对锂离子电池荷电状态的预测最大估算误差为0.02,均方根误差为0.003 204,该方法能有效地估算锂离子电池SOC并且有很高的估计精度。该模型研究为未来电池荷电状态估算系统的模型构建提供了参考。

关键词: 锂离子电池, 随机森林回归, 荷电状态(SOC)估计

Abstract: State-of-charge (SOC) is a very important part of lithium-ion battery prediction and health management. As the SOC of the lithium battery cannot be measured directly, this paper presents a method of estimating the SOC of the lithium-ion battery by the random forest regression. Firstly, a random forest regression model is constructed. The battery current, battery voltage and battery temperature are used as the training input of the model, and the corresponding SOC is used as the training output of the model. And then, the random forest algorithm for model training is conducted. Finally, the training model is applied to the battery SOC estimation. The results show that by the random forest regression algorithm, the maximum estimation error of the lithium-ion battery charge is 0.02,and the RMSE is 0.003204.This method can effectively estimate the lithium-ion battery SOC and has high estimation accuracy. This model may provide a reference for the model construction of future battery charge estimation system.

Key words: lithium-ion battery, random forest regression, state-of-charge (SOC) estimation

中图分类号: 

  • TP301.6
[1] 姜琳. 锂离子电池荷电状态估计与寿命预测技术研究[D]. 成都:电子科技大学, 2013.
[2] 余升. 电动汽车电池管理系统SOC估计算法研究[D]. 合肥:合肥工业大学, 2013.
[3] WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258:321-339.
[4] LEE S, KIM J, LEE J, et al. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J]. Journal of Power Sources, 2008, 185(2):1367-1373.
[5] YAN Qiyan, WANG Yanning. Predicting for power battery SOC based on neural network[C]// 2017 36th Chinese Control Conference. Piscataway NJ: IEEE Press, 2017:4140-4143.
[6] LIU F, LIU T, FU Y. An Improved SOC estimation algorithm based on artificial neural network[C]// International Symposium on Computational Intelligence and Design. Piscataway NJ: IEEE Press, 2016:152-155.
[7] 赵海霞, 武建. 浅析主成分分析方法[J]. 科技信息, 2009(2):87-87.
[8] 李亚林. 动力电池荷电状态估算方法浅析[J]. 汽车实用技术, 2017(18):120-121.
[9] 石婷婷. 基于随机森林算法的短期负荷预测研究[D]. 郑州:郑州大学, 2017.
[10] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1):81-106.
[11] EVERITT B S. Classification and regression trees[M]// Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ: John Wiley & Sons, Ltd, 2005:17-23.
[12] QUINLAN J R. C4.5: programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers Inc, 1992.
[13] BREIMAN L. Random forest[J]. Machine Learning, 2001, 45:5-32.
[14] SEGAL M R. Machine learning benchmarks and random forest regression[EB/OL]. (2004-04-14) [2017-09-10]. http://escholarship.org/uc/item/35x3v9t4.
[15] SAHA B, GOEBEL K. NASA Ames prognostics data repository: battery data set [DS/OL]. Moffett Field, CA: NASA Ames Research Center, 2007[2017-09-10]. https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository.
[1] 许伦辉,黄宝山,钟海兴. AGV系统路径规划时间窗模型及算法[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 1-8.
[2] 石亚冰, 黄予, 覃晓, 元昌安. 基于优化初始种子新策略的K-Means聚类算法[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 33-40.
[3] 曹永春, 邵亚斌, 田双亮, 蔡正琦. 一种基于免疫遗传算法的聚类方法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 59-64.
[4] 张超群, 郑建国, 李陶深. 侦察蜂在人工蜂群算法中的作用[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 72-80.
[5] 周艳聪, 顾军华, 董永峰. 逆向二进制防碰撞算法及其FPGA硬件实现[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 94-99.
[6] 黄敏, 靳婷, 钟声, 马玉春. 基于改进蚁群算法求解连续空间寻优问题[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 34-38.
[7] 崔耀东, 周密, 杨柳. 多线材一维下料问题的求解策略[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 149-153.
[8] 马宁, 于洪志. 基于Arnold变换和DCT变换的图像水印算法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 163-167.
[9] 鄂旭, 邵良杉, 李胜, 王全铁. 一种基于关联度的区间型数据离散化方法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 134-137.
[10] 吕虹, 秦永彬, 罗聪. 基于Memetic算法的飞机地面作业调度问题研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 145-150.
[11] 王俊杰, 温雪岩, 徐克生, 于鸣. 基于局部敏感哈希的改进堆叠算法[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 21-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发