广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (1): 9-16.doi: 10.16088/j.issn.1001-6600.2018.01.002

• • 上一篇    下一篇

脉冲神经网络硬件系统性能监测平台

万雷,罗玉玲*,黄星月   

  1. 广西师范大学电子工程学院,广西桂林541004
  • 收稿日期:2017-05-23 出版日期:2018-01-20 发布日期:2018-07-17
  • 通讯作者: 罗玉玲(1984—),女,湖北武汉人,广西师范大学副教授。E-mail:yuling0616@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(61603104);广西自然科学基金(2015GXNSFFBA139256,2016GXNSFCA380017);广西高校中青年骨干教师基础能力提升项目(KY2016YB059);广西人文社会科学发展研究中心项目(ZX2016030);广西研究生教育创新计划项目(YCSZ2016034)

Monitoring Platform for the Hardware Spike Neural Networks

WAN Lei,LUO Yuling*,HUANG Xingyue   

  1. College of Electronic Engineering,Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2017-05-23 Online:2018-01-20 Published:2018-07-17

摘要: 随着脉冲神经网络规模不断增大、功能越来越复杂,如何快速地验证神经网络硬件系统结构各部分的功能,并准确地评估其性能成为设计者面临的严峻挑战。本文设计了一款可视化性能监测平台,用于脉冲神经网络硬件系统的功能验证和性能监测。以Xilinx Zynq-7000器件为例,测试结果表明该监测平台具有轻量化设计、良好的人机交互界面和通用性等优势,能够提高脉冲神经网络硬件系统的功能验证和性能评估效率,为其硬件系统设计提供了较好的辅助功能验证与性能分析手段。

关键词: 脉冲神经网络, 硬件系统, 监测平台, 可视化, 功能验证, 性能监测

Abstract: With the increasing size of the spike neural network with very complicated functions,how to quickly verify the functions of the hardware system structure of the neural network,and accurately assess its performance has become a serious challenge for designers. A visualization performance monitoring platform is designed in this paper,which is used as functional verification and performance monitoring for the hardware SNNs. The monitoring platform takes the Xilinx Zynq-7000 device as an example and has the advantages of lightweight design,good human-computer interaction interface and versatility,and can improve the efficiency of system function verification and performance evaluation of SNN hardware structure. It provides auxiliary functional verification and performance analysis for the design of SNN hardware systems.

Key words: spike neural network, hardware system, monitoring platform, visualization, functional verification, performance monitoring

中图分类号: 

  • TP183
[1] CATANIA V,MINEO A,MONTELEONE S,et al.Noxim: an open,extensible and cycle-accurate network on chip simulator[C]//Proceedings of the International Conference on Application-Specific Systems. Toronto: IEEE Press,2015: 162-163. DOI: 10.1109/ASAP.2015.7245728.
[2] WANG D,LO C,VASILJEVIC J,et al. DART: a programmable architecture for NoC simulation on FPGAs[J]. IEEE Transactions on Computers,2014,63(3): 664-678. DOI: 10.1109/TC.2012.121.
[3] LOTLIKAR S,PAI V,GRATZ P V. AcENoCs: a configurable HW/SW platform for FPGA accelerated NoC emulation [C]//Proceedings of 24th International Conference on VLSI Design. Chennai,India: IEEE Press,2011: 147-152. DOI: 10.1109/VLSID.2011.46.
[4] JIANG N,MICHELOGIANNAKIS G,BECHER D,et al.Booksim 2.0 User’s Guide[R]. State of California: Standford University,2010.
[5] LIU Junxiu,HARKIN J,LI Yuhua,et al. Low cost fault-tolerant routing algorithm for networks-on-chip[J]. Microprocessors and Microsystems,2015,39(6): 358-372. DOI: 10.1016/j.micpro.2015.06.002.
[6] WAN Lei,LIU Junxiu,HARKIN J,et al. Layered tile architecture for efficient hardware spiking neural networks[J]. Microprocessors and Microsystems,2017,53(6): 21-32. DOI: 10.1016/j.micpro.2017.07.005
[7] CARRILLO S,HARKIN J,MCDAID L,et al. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive Network-on-Chiprouters[J]. Neural Networks,2012,33(9): 42-57. DOI: 10.1016/j.neunet.2012.04.004.
[8] JIMENEZ-FEMANDEZ A,JIMENEZ-MORENO G,LINARES-BARRANCO A,et al. Aneuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs[J]. Sensors,2012,12(4): 3831-3856. DOI:10.3390/s120403831.
[1] 罗兰, 周楠, 司杰. 不确定细胞神经网络鲁棒稳定新的时滞划分法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 45-52.
[2] 范瑞,蒋品群,曾上游,夏海英,廖志贤,李鹏. 多尺度并行融合的轻量级卷积神经网络设计[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 50-59.
[3] 周戎龙,罗玉玲,闭金杰,岑明灿,丘森辉,廖志贤. 图像并行加密算法在手持设备上的应用研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 60-70.
[4] 张金磊, 罗玉玲, 付强. 基于门控循环单元神经网络的金融时间序列预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 82-89.
[5] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17-24.
[6] 林晓宇, 钟一文, 王爱荣. 趋药性人工蜂群算法训练神经网络研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 120-124.
[7] 朱经纬, 芮挺, 李决龙, 方虎生, 张金林. 基于蚁群神经网络的机械手自组织逆运动规划[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 125-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发